Digital transformation: a review, synthesis and opportunities for future research

  • Open access
  • Published: 18 April 2020
  • Volume 71 , pages 233–341, ( 2021 )

Cite this article

You have full access to this open access article

research paper technology

  • Swen Nadkarni 1 &
  • Reinhard Prügl 1  

159k Accesses

11 Altmetric

Explore all metrics

In the last years, scholarly attention was on a steady rise leading to a significant increase in the number of papers addressing different technological and organizational aspects of digital transformation. In this paper, we consolidate existing findings which mainly stem from the literature of information systems, map the territory by sharing important macro- and micro-level observations, and propose future research opportunities for this pervasive field. The paper systematically reviews 58 peer-reviewed studies published between 2001 and 2019, dealing with different aspects of digital transformation. Emerging from our review, we develop inductive thematic maps which identify technology and actor as the two aggregate dimensions of digital transformation. For each dimension, we derive further units of analysis (nine core themes in total) which help to disentangle the particularities of digital transformation processes and thereby emphasize the most influential and unique antecedents and consequences. In a second step, in order to assist in breaking down disciplinary silos and strengthen the management perspective, we supplement the resulting state-of-the-art of digital transformation by integrating cross-disciplinary contributions from reviewing 28 papers on technological disruption and 32 papers on corporate entrepreneurship. The review reveals that certain aspects, such as the pace of transformation, the culture and work environment, or the middle management perspective are significantly underdeveloped.

Similar content being viewed by others

research paper technology

Digital Transformation: A Literature Review and Guidelines for Future Research

research paper technology

An Introduction to Digital Transformation

research paper technology

Digital Transformation Framework: A Bibliometric Approach

Avoid common mistakes on your manuscript.

1 Introduction

Digital transformation, defined as transformation ‘concerned with the changes digital technologies can bring about in a company’s business model, … products or organizational structures’ (Hess et al. 2016 , p. 124), is perhaps the most pervasive managerial challenge for incumbent firms of the last and coming decades. However, digital possibilities need to come together with skilled employees and executives in order to reveal its transformative power. Thus, digital transformation needs both technology and people. In the last years, scholarly attention, particularly in the information systems (IS) literature, was on a steady rise leading to a significant increase in the number of papers addressing different technological and organizational aspects of digital transformation. In the light of this development, we are convinced it is the right time to map the territory and reflect on the current state of knowledge. Therefore, in this paper we aim at providing a descriptive, thematic analysis of the field by critically assessing where, how and by whom research on digital transformation is conducted. Based on this analysis, we identify future research opportunities.

We approach this objective in two steps. First, we adopt an inductive approach and conduct a systematic literature review (following Tranfield et al. 2003 ; Webster and Watson 2002 ) of 58 peer-reviewed papers dealing with digital transformation. By applying elements of grounded theory and content analysis (Corley and Gioia 2004 ; Gioia et al. 1994 ) we identify important core themes in the literature that are particularly pronounced and/or unique in transformations enabled by digital technologies. In a second step, in order to assist in breaking down disciplinary silos (Jones and Gatrell 2014 ) and avoiding the building of an ivory tower (Bartunek et al. 2006 ; Fuetsch and Suess-Reyes 2017 ), we supplement the pre-dominantly IS-based digital transformation literature with a broader management perspective. Accordingly, we integrate cross-disciplinary contributions from reviewing 28 papers on technological disruption and 32 papers on corporate entrepreneurship.

We find these research fields particularly suitable for informing digital transformation research for two reasons. First, by reviewing the literature on technological disruption we hope to derive implications regarding technology adoption and integration. Burdened with the legacy of old technology, bureaucratic structures and core rigidities (Leonard-Barton 1992 ), incumbents may face major challenges in this respect during their digital transformation journey. Second, we expect corporate entrepreneurship to add a more holistic perspective on firm-internal aspects during the process of transformation, such as management influence or the impact of knowledge and organizational learning.

Our findings and related contributions are threefold: First, based on a systematic and structured analysis we develop digital transformation maps which inductively categorize and describe the existing body of research. These thematic maps identify technology and actor as the two aggregate dimensions of digital transformation. Within these dimensions, we reveal nine core themes which help to disentangle the particularities of digital transformation processes and thereby emphasize the most influential and unique antecedents and consequences of this specific type of transformation. Thus, it becomes possible to identify the predominant contextual factors for which research would create the strongest leverage for a better understanding of the challenges inherent in digital transformation. Second, we contribute to the advancement of this field by elaborating opportunities for future research on digital transformation which integrate the three perspectives mentioned above. In particular, informed by corporate entrepreneurship, we find that the important middle management perspective on digital transformation has thus far been largely neglected by researchers. Also, emerging from our review we call for more studies on the various options for integrating digital transformation within organizational architectures and existing processes. Third, in reviewing the adjacent literature on technological disruption and corporate entrepreneurship, we strengthen the valuable management perspective within the primarily IS-based discussion on digital transformation. This way we avoid the reinvention of the wheel while at the same time enable the identification of cross-disciplinary research opportunities. We hope to stimulate discussion between these different but strongly related disciplines and enable mutual learning and a fruitful exchange of ideas.

2 Conceptual foundations

Technology as a major determinant of organizational form and structure has been well acknowledged by academics for a long time (Thompson and Bates 1957 ; Woodward 1965 ; Scott 1992 ). Following a significant decline of interest in this relationship until the mid-1990s (Zammuto et al. 2007 ), innovations in information technologies (IT) and the rise of pre-internet technologies have revitalized its relevance in the context of organizational transformation. Thus, the literature on IT-enabled organizational transformation, a concept which originates from the field of information systems (IS) that has caught considerable academic attention starting back in the early 1990s (Ranganathan et al. 2004 ; Besson and Rowe 2012 ), may be seen as one of the scholarly roots of digital transformation research. In his seminal book, Morton ( 1991 ) argued that companies must experience fundamental transformations for effective IT implementation. In the course of the years a shift of attention occurred from technological to managerial and organizational issues (Markus and Benjamin 1997 ; Doherty and King 2005 ). Non-technological aspects such as leadership, culture, and employee training were found to be equally important for successful IT-enabled transformation (Markus 2004 ). This is supported by Orlikowski ( 1996 ) who found empirical evidence from a 2-year case study that organizational transformation was in fact enabled by technology, but not caused by it.

Today, information technologies have become ‘one of the threads from which the fabric of organization is now woven’ (Zammuto et al. 2007 , p. 750). Digital technologies are considered a major asset for leveraging organizational transformation, given their disruptive nature and cross-organizational and systemic effects (Besson and Rowe 2012 ). In order to achieve successful digital transformation, changes must occur at various levels within the organization, including an adaptation of the core business (Karimi and Walter 2015 ), the exchange of resources and capabilities (Cha et al. 2015 ; Yeow et al. 2018 ), the reconfiguration of processes and structures (Resca et al. 2013 ), adjustments in leadership (Hansen and Sia 2015 ; Singh and Hess 2017 ), and the implementation of a vivid digital culture (Llopis et al. 2004 ). Therefore, the scope of our review revolves around digital transformation at the organizational level only (in contrast to implications at the individual level).

In this study, we conceptualize digital transformation at the intercept of the adoption of disruptive digital technologies on the one side and actor-guided organizational transformation of capabilities, structures, processes and business model components on the other side. In other words, and in line with Hess et al. ( 2016 ), we define digital transformation as organizational change triggered by digital technologies. Hence, we argue that two perspectives of digital transformation within organizations must be captured: a technology-centric and an actor-centric perspective. To exploit the technology-centric perspective we include the literature on technological disruption (e.g. Tushman and Anderson 1986 ; Anderson and Tushman 1990 ) and merge it with research on digital transformation. For the actor-centric perspective, we derive essential implications from the field of corporate entrepreneurship (Guth and Ginsberg 1990 ), which we believe may add valuable insights regarding actor-driven innovation and renewal processes within firms. In the following, we offer a brief introduction to both concepts and their relationship with digital transformation.

Rice et al. ( 1998 ) define disruptive innovations as ‘game changers’ which have the potential ‘(1) for a 5–10 times improvement in performance compared to existing products; (2) to create the basis for a 30–50% reduction in costs; or (3) to have new-to-the world performance features’ (p. 52). Similarly, Utterback ( 1994 ) emphasizes this disruptiveness at the firm and industry level and provides a similar ‘game changer’ definition in terms of ‘change that sweeps away much of a firm’s existing investment in technical skills and knowledge, designs, production technique, plant and equipment’ (p. 200). Tushman and Anderson ( 1986 ) distinguish between product and process disruptiveness. Product disruptiveness encompasses new product classes, product substitutions, or fundamental product improvements. Process disruptiveness may take the form of process substitutions or process innovations which radically improve industry-specific dimensions of merit. Christensen and Raynor ( 2003 ) introduce a further form of disruptive innovations, namely disruptive business model innovations, which represent the implementation of fundamentally different business models in an existing business.

We argue that digital technologies may reflect in all of these definitions of disruptive innovation. They may represent new-to-the-world product innovations, dislocate existing processes, and open up entirely new business models. As resumed in a recent study by Li et al. ( 2017 ), e-commerce for instance is defined as a disruptive technology (Johnson 2010 ) which involves significant changes to an organization’s culture, business processes, capabilities, and markets (Zeng et al. 2008 ; Cui and Pan 2015 ).

Corporate entrepreneurship (CE) on the other side is a multi-dimensional concept at the intersection of entrepreneurship and strategic management in existing organizations (Zahra 1996 ; Hitt et al. 2001 ; Dess et al. 2003 ). We adopt the conceptualization proposed by Guth and Ginsberg ( 1990 , p. 5), who argue that corporate entrepreneurship deals with two phenomena ‘(1) the birth of new businesses within existing organizations, i.e. internal innovation or venturing, and (2) the transformation of organizations through renewal of the key ideas on which they are built, i.e. strategic renewal.’ Particularly the aspect of strategic renewal in corporate entrepreneurship, also labelled as strategic change, revival, transformation (Schendel 1990 ), reorganization, redefinition (Zahra 1993 ), or organizational renewal (Stopford and Baden-Fuller 1994 ), provides a promising interface to digital transformation. As stated by Covin and Miles ( 1999 , p. 50), corporate entrepreneurship ‘revitalizes, reinvigorates and reinvents’—processes also required for digital transformation. Various authors have stated that corporate entrepreneurship is a vehicle to improve competitive positioning and transform corporations (Schollhammer 1982 ; Miller 1983 ; Khandwalla 1987 ; Guth and Ginsberg 1990 ; Naman and Slevin 1993 ; Lumpkin and Dess 1996 ). Considering the disruptive nature of many current digital technologies, we believe that organizations need to fundamentally renew and redefine the key ideas of their business in order to fully exploit the potential of digitization and eventually achieve successful transformation. The literature places particular attention on the role of middle managers as the locus of corporate entrepreneurship (Burgelman 1983 , Floyd and Wooldridge 1999 ). Concluding, we will review the research on corporate entrepreneurship and identify those contributions which we believe may offer valuable knowledge regarding actor-driven internal renewal and change processes in the light of digital transformation.

Our review of the literature on digital transformation, technological disruption and corporate entrepreneurship is conducted in a two-step approach. First, we review, analyze and synthesize existing articles on digital transformation. Then, in a second step we supplement these findings be simultaneously reviewing the literature stream on technological disruption and corporate entrepreneurship. We believe a separate analysis and contrasting of the research streams is appropriate for two reasons: first, it provides the reader with more clarity on the status quo of digital transformation knowledge and prevents the confusion of concepts emerging from different literature fields. Second, white spots and opportunities for future research regarding digital transformation become much more visible in such a structured approach.

3 Research methodology

A systematic review is a type of literature review that applies an explicit algorithm and a multi-stage review strategy in order to collect and critically appraise a body of research studies (Mulrow 1994 ; Pittaway et al. 2004 ; Crossan and Apaydin 2010 ). This transparent and reproducible process is ideally suited for analyzing and structuring the vast and heterogeneous literature on digital transformation. In conducting our review, we followed the guidelines of Tranfield et al. ( 2003 ) and the recommendations of Denyer and Neely ( 2004 , p. 133) Footnote 1 as well as Fisch and Block ( 2018 ) in order to ensure a high quality of the review.

The nature of our review is both scoping and descriptive (Rowe 2014 ; Paré et al. 2015 ) as we aim to provide an initial indication of the potential size and nature of the available literature as well as to summarize and map existing findings from digital transformation research. By developing opportunities for future research, our review further contributes to the advancement of this field and stimulates theory development.

For the purpose of data collection, we exclusively limit our focus on peer-reviewed academic journals as recommended by McWilliams et al. ( 2005 ). Thus, we opted to exclude work in progress, conference papers, dissertations, or books. First, based on discussion among the authors and the reading of a few highly-cited papers, we designed our search criteria using combinations of keywords containing ‘ digital* AND transform*’ , ‘ digital* AND disrupt*’ , ‘ digitalization’ , and ‘ digitization ’. Then, we manually searched each issue of each volume of the leading journals in the management Footnote 2 and IS field (AIS Basket of eight). Footnote 3 In addition, we run our search query against five different electronic databases: Business Source Premier (EBSCO) , Scopus , Science Direct , Social Sciences Citation Index (SSCI) , and Google Scholar . We used all years available and only included articles referring to business, management, or economics in order to exclude irrelevant publications. We abstained from including digital innovation in our search (the only exception in our sample is a recent literature review by Kohli and Melville ( 2019 ), in order to capture consolidated insights). Although we realize that it is a hot topic in IS research at the moment (e.g. Fichman et al. 2014 ; Nambisan et al. 2017 ; Yoo et al. 2010 , 2012 ), we aim to concentrate our focus on papers dealing with digital transformation on a broader level (firm and industry), rather than with transitions within innovation management.

Our first search query was conducted mid 2017 and yielded an initial sample of 1722 publications. This very large sample was mainly due to the broad ambiguity of the terms ‘digital’ and ‘disrupt’. Given these broad search parameters, we anticipated that only a small fraction of this very large sample would prove to be of substantive relevance to us. To select these relevant articles for our final sample, we performed a predefined and structured multi-step selection process (similar to the approach of Siebels and Knyphausen-Aufseß 2012 ; Vom Brocke et al. 2015 ) and defined specific criteria for inclusion (Templier and Paré 2015 ). The filters during our selection process included (1) scanning the titles, (2) reading abstracts, (3) removing duplicates, (4) full reading and in-depth analysis of the remaining papers, and finally (5) cross-referencing and backward searching by looking through the bibliographies of the most important articles to find additional relevant work. The initial pool was split in half between two panelists who separately performed the scanning of titles, analysis of abstracts and removal of duplicates. After these early steps, the sample could be narrowed down to 155 articles. As we arrived at step 4 “full reading and in-depth analysis of the remaining papers”, both panelists read and independently classified each of the remaining 155 studies. During this process, papers qualified for the final sample if they satisfied three requirements: (1) articles were required to have their primary focus and contribution within digital transformation research or digitally-induced organizational transformation (e.g. a vast number of papers inadequately captured the topic of digital transformation as they primarily focused on business model innovation), (2) articles needed to be based on a sound theoretical foundation and therefore not primarily practitioner oriented (such as articles that offer popular recommendations to business leaders on how to survive digital transformation), (3) papers that were not addressing digital transformation at an organizational level (e.g. the rise of home-based online businesses by entrepreneurs) were dismissed. Whenever disagreements emerged regarding the inclusion or classification of an article, we engaged in discussion and tried to resolve the issue together to make our selection rules more reliable. We updated the review in the autumn of 2018 for any articles that had appeared between then. Following this approach, 58 studies passed all five selection steps and were included in our final sample.

Within this sample, conceptual articles (27) and case studies (20) are dominant. Roughly 60% of the articles stem from the IS literature, while 40% cover a broader management perspective of digital transformation. While the reviewed papers span a time frame from 2001 to 2018, approximately eighty-percent of articles were published within the past 5 years, indicating the relative novelty of digital transformation as a research discipline. The distribution of our sample according to journals is provided in Table  4 of “ Appendix ”.

Upon the recommendation of Webster and Watson ( 2002 ), our categorization and analysis of the literature was concept-centric. First, to facilitate analysis and build a basis for our initial coding, each selected paper was reviewed to determine the following database information.

(1) Article title, (2) outlet, (3) research methodology, (4) sample, (5) region, and (6) key findings (see full database in Table  5 of “ Appendix ”). Next, we started coding our sample, adopting elements of the approach introduced by Corley and Gioia ( 2004 ). We began by identifying initial concepts in the data and grouping them into provisional categories and first order concepts (open coding). Then, we engaged in axial coding (Locke 2001 ) and searched for relationships and common patterns between and among these provisional categories, which allowed us to assemble them into second order themes. Finally, we assigned these second order themes to aggregate dimensions, representing the highest level of abstraction in our coding. In sum, reviewing and analyzing the extant literature, 194 coded insights were generated within the field of digital transformation: 61 first order concepts, nine second order themes, and two aggregate dimensions. The nine second order themes represent core themes across the papers, which finally constitute two aggregate dimensions: technology and actor. In conclusion, we define digital transformation as actor-driven organizational transformation triggered by the adoption of technology-driven digital disruptions. The result of the coding process is a high-level inductive map of the core themes in digital transformation research (Fig.  1 ).

figure 1

Digital transformation high-level thematic map emerging from the analysis of the literature

The reviewed studies from our sample provide a rich body of knowledge regarding the specific contextual factors of digital transformation. This may be beneficial to both researchers and practitioners enabling a more comprehensive understanding of the peculiarities of digital transformation (in comparison to previous technology-driven transformations).

4.1 Macro-level findings

On a macro level, the central observation emerging from our review is that both technology- and actor-centric aspects take center stage within this debate. This is also reflected in various definitions of digital transformation provided in the sample. For example, Lanzolla and Anderson ( 2008 ) represent the technology-centric side and emphasize the diffusion of digital technologies as an enabler for transformation. Such digital technologies may include big data, mobile, cloud computing or search-based applications (White 2012 ). Similarly, Hess et al. ( 2016 ) note that digital transformation is ‘concerned with the changes digital technologies can bring about in a company’s business model, which result in changed products or organizational structures or in the automation of processes’ (p. 124). However, Hess et al. ( 2016 ) also highlight the role of actors (e.g. managers) in promoting transformation processes, while facing the challenge of simultaneously balancing the exploration and exploitation of resources. Leaders must have trust in the value and benefits of new IT technologies and support their implementation (Chatterjee et al. 2002 ).

In total, we find an almost even distribution of papers studying the two dimensions of technology and actor: 33% are technology-centric, 34% are actor-centric, and 33% of papers cover both technology and actor. However, within these two dimensions we observe a rather uneven distribution of articles by second order themes. On the technology-centric side, we find that understanding the implications of digital technologies on the consumer interface and market environment are highly active research streams. In comparison, understanding the pace of change in times of digital transformation and its direct impact on incumbents is so far comparably understudied. On the actor-centric side, our review reveals a very dominant focus on leadership and capabilities in a digital context, while in contrast company culture and work environment thus far received less recognition. We also find that the status-quo of digital transformation literature is rather diverse, in a sense that papers discuss topics across various categories of our thematic map and are therefore not restricted nor focused to a specific unit of analysis. The vast majority of articles is related to adjacent topics of digital transformation underpinning its nature as a diverse and broad field of research while again indicating its emerging nature.

In addition, we observe some degree of diversity in the theoretical foundations drawn upon. Different theories are applied by several authors to capture the context of digital transformation, e.g. alignment view, configuration theory, resource-based view, dynamic capabilities, organizational learning theory, network view or business process reengineering. It would be interesting to use other theoretical angles, for example from the literature on corporate entrepreneurship and technological disruption, in order to increase theoretical diversity. Such an exchange with different fields of research would broaden the scope of the field and help bridging an ivory divide . Finally, from a methodological perspective, we observe that actor-centric papers primarily use case studies while technology-centric studies at this point are pre-eminently conceptual. In general, the literature is scarce regarding quantitative empirical evidence. We see this as a strong indicator for the early stage of digital transformation research.

4.2 Micro-level findings: the technology-centric side of the equation

In the following, we present and discuss the most important findings of the second order themes within the technology-centric dimension. In Fig.  2 we provide a thematic map for this dimension and in Table  1 a brief summary including illustrative quotes.

figure 2

Thematic map for technology-driven themes in digital transformation literature

4.2.1 Pace of change and time to market

In times of digital transformation, the speed of technological change is disproportionally accelerating with new digital capabilities being rolled out every year. The technological capability of applications such as the Internet of Things (IoT), big data, cloud computing, and mobile technologies significantly increases the overall pace of change. For example, entire industries, like the newspaper business, have been transformed and digitized within a very short period of time (Karimi and Walter 2015 ). Further, the cloud and online platforms have revolutionized the process and pace of turning an innovative idea into a business (Vey et al. 2017 ). Today, innovative ideas can be realized within days and companies set-up literally ‘overnight’. In this sense, in the digital world striving for a ‘first-mover advantage’ due to a ‘winner takes it all’ environment has become more important for incumbent firms (Grover and Kohli 2013 ) as they have much less time to respond to such threats and should not give away first-mover advantages too easily.

Moreover, pure digital companies like Facebook, Google or Amazon have substantially raised the overall time to market and speed of product launches (Bharadwaj et al. 2013 ). With continuous improvements in hardware, software and connectivity, these companies set the pace for a tightly timed series of product launches. Thus, firms in the hybrid world (digital and physical) are being put under enormous pressure to also accelerate their product introductions. In a digitally transformed market, the control of speed of product development and launches is increasingly transferred to an ‘ecosystem of innovation’ in the sense of a network of actors with complementary products and services (Bharadwaj et al. 2013 ).

4.2.2 Technology capability and integration

The technological capability and power of digital transformation applications, such as for example the Internet of Things (IoT), big data, cloud computing, and mobile technologies, is in terms of computing power, data storage and information distribution in many cases significantly higher than in previous technology-driven transformations. Earlier business transformations were mostly concerned about introducing internal management information systems such as enterprise resource planning (ERP) or customer relationship management (CRM). These transformations were usually limited to improvements to business processes within firm boundaries (see Ash and Burn 2003 ; Kauffman and Walden 2001 in: Li et al. 2017 ). But today, cross-boundary digital technologies such as IoT devices (Ng and Wakenshaw 2017 ), 3D printing (Rayna and Striukova 2016 ), and big data analytics (Dremel et al. 2017 ), drive transformations that go far beyond internal process optimizations as they potentially induce drastic changes to business models (Rayna and Striukova 2016 ), organizational strategy (Bharadwaj et al. 2013 ), corporate culture (El Sawy et al. 2016 ; Dremel et al. 2017 ; Sia et al. 2016 ), and entire industry structures (Kohli and Johnson 2011 ).

Further, the review confirms that the role and significance of data itself is changing profoundly and that personal data has become one of the most powerful assets in the digital era (Ng and Wakenshaw 2017 ). In fact, we believe the impact of the massive increase in quantity and quality of data generated every day (Bharadwaj et al. 2013 ) and the game changing power of big data analytics (Günther et al. 2017 ) are yet to be fully experienced and understood by society, economy and academics.

With regards to the process of dematerialization of tangible products and objects (e.g. CDs, books, machinery etc.), triggered by the transformative capabilities of digital technologies, the most notable insight is that intriguingly, in many cases the digital substitutes, for example e-books, offer superior performance and higher customer benefits than their physical counterparts (Loebbecke and Picot 2015 ). This, for example, is in contrast to the assumptions provided by Christensen ( 1997 ) more than 20 years ago, arguing that new disruptive technologies usually provide different values from mainstream technologies and are often initially inferior to mainstream technologies, therefore only serving niche markets in the beginning.

Finally, regarding technology integration, the current state of research emphasizes the importance of flexible IT (Cha et al. 2015 ), new enterprise platforms (El Sawy et al. 2016 ), and a strong and scalable operational backbone (Sebastian et al. 2017 ) as part of an agile digital infrastructure. The old paradigms of technology integration are not effective any more. However, in a second step we need to reach a more comprehensive understanding of ‘how’ and ‘where’ the integration of technology and transformation activities should be embedded within the organizational architectures of incumbent firms.

4.2.3 Consumer and other stakeholder interface

With regards to the customer interface, which is currently receiving the highest levels of attention by scholars, we conclude that there is some solid research particularly on changes in consumer behavior (Berman 2012 ; El Sawy et al. 2016 ; Ives et al. 2016 ; Lanzolla and Anderson 2008 ), consumer preferences (Vey et al. 2017 ) and consumer knowledge (Berman 2012 ; Granados and Gupta 2013 ). Firstly, our review confirms that in the new digital marketplace, consumers behave differently than before, and traditional marketing techniques may not apply anymore. Today there are myriad choices to easily gather information about products and services far before the actual purchase. For instance, customer buying decisions are increasingly influenced by online customer-to-customer interaction via platforms and social media, where users share products feedbacks, upload home video clips, or publish blog entries (Berman 2012 ). In this sense, digital technologies are also transforming firms’ customer-side operations (Setia et al. 2013 ) and customer engagement strategies (Sebastian et al. 2017 ). For example, reaching out to customers in a digital environment requires digital omnichannel marketing, including e.g. social media, mobile apps, and augmented reality (El Sawy et al. 2016 ). Secondly, we may note that digital technologies increasingly reduce the information asymmetries between sellers and buyers (Granados and Gupta 2013 ). In this sense, information ubiquity (Vey et al. 2017 ) and instant access to data via mobile technologies (Berman 2012 ) profoundly change the long-established seller–customer relationship. And thirdly, the current literature raises awareness for the emergence of multi-sided business models. While in the ‘old’ world, intermediaries were matching sellers and buyers, in the digital market place, intermediation increasingly takes place through the establishment of multi-sided digital platforms and networks (Bharadwaj et al. 2013 ; Evens 2010 ; Pagani 2013 ).

4.2.4 Distributed value creation and value capture

The review of the literature reveals that the value chain has become far more distributed in times of digital transformation—particularly value creation and value capture. Two major changes can be observed here: (1) digital technologies offer opportunities to customers to co-create products with the manufacturer, e.g. via digital platforms (El Sawy et al. 2016 ; Ng and Wakenshaw 2017 ), and (2) on an inter-firm level value is increasingly co-created and captured in a series of partnerships in a value network (Evens 2010 ). As Bharadwaj et al. ( 2013 ) argue, network effects are the key differentiator and driver of value creation and capture in a digital world. The focus of value creation is therefore shifting from value chain to value networks. For this purpose, companies like Google are experimenting with multi-sided business models. In such a multilayered business model, a company gives away certain products or services in one layer to capture value at a different layer (Bharadwaj et al. 2013 ). Google is giving away its Android operating system for free and captures value via the ability to control advertising on every phone that uses Android.

In more general terms, we may conclude that control of value in the digital world is less and less determined by R&D capabilities, competitors, or industry boundaries. Instead the buyer, not the seller, determines the dimensions of value that matter (Keen and Williams 2013 ). Therefore, businesses need to engage with their customers at every point in the process of value creation (Berman 2012 ). Also, the strong impact of digital technologies on incumbent’s value chains imply some degree of deviation from the classical and often analog core business. For example, new product-related competencies, platform capabilities or value architectures will be required. And, incumbents must prepare for new forms of monetization in the digitized marketplace.

4.2.5 Market environment and rules of competition

This is a rather broad and diverse categorization in our review, as it comprises technology-driven changes in the market environment. After consumer-centric aspects this research stream received the most attention by scholars in the review (on the technology-centric side). In sum, the current state of literature recognizes three major developments. First, digital transformation redefines, blurs and even dissolves existing industry boundaries which may lead to cross-industry competition (Sia et al. 2016 ; Weill and Woerner 2015 ). Dominant industry logics (Sabatier et al. 2012 ) apparently do not work anymore in times of digital transformation. The ‘new kid on the block can come out of the blue’ (Vey et al. 2017 , p. 23) and even individuals can become competitors as 3D Printing is expected to lead to a sharp increase in competition from SMEs and individual entrepreneurs (Rayna and Striukova 2016 ). And with the emergence of multi-sided business models also incumbents are starting to disrupt new markets (Weill and Woerner 2015 ). For instance, Google is disrupting the mobility sector with its self-driving car subsidiary Waymo, while Amazon has introduced AmazonFresh as a grocery delivery service which is seen as a potentially tough competitor to supermarkets. Second, with the emergence of digital platforms, networks, and ecosystems the market infrastructure becomes increasingly interconnected (Grover and Kohli 2013 ; Majchrzak et al. 2016 ; Markus and Loebbecke 2013 ). In a broader sense, we see a shift from controlling or participating in a linear value chain to operating in an ecosystem or network (Weill and Woerner 2015 ). As different types of innovation networks with different cognitive and social translations regarding knowledge emerge, novel properties of digital infrastructure in support of each network are required. Digital technologies therefore increase innovation network knowledge heterogeneity (Lyytinen et al. 2016 ). Third, the free flow of digital goods precipitates an erosion of property rights and higher risks of imitation (Loebbecke and Picot 2015 ).

4.3 Micro-level findings: the actor-centric side of the equation

In the following, we present and discuss the most important findings of the second order themes within the actor-centric dimension. In Fig.  3 we provide a thematic map for this dimension and in Table  2 a brief summary including illustrative quotes.

figure 3

Thematic map for actor-driven themes in digital transformation literature

4.3.1 Transformative leadership

Understanding the impact of digital transformation on leadership and management behavior is a very active and prioritized research focus. In total, 23 papers in our review explore this aspect. First and foremost, research calls for a shift in the traditional view of IT strategy as being subordinate to business strategy (El Sawy et al. 2016 ). In the course of the past two decades information technologies have surpassed their subordinate role as administrative ‘back office’ assets and evolved into an essential element of corporate strategy building. Thus, incumbents should align IT and business strategies on equal terms and fuse them into ‘digital business strategy’ (Bharadwaj et al. 2013 ).

Also, emphasis is placed on the changing nature of leadership itself, caused by digital transformation. Such changes may include rapid optimization of top management decision-making processes enabled by instant access to information and expansive data sets (Mazzei and Noble 2017 ), new communication principles (Bennis 2013 ; Granados and Gupta 2013 ), or changes in leadership education (Sia et al. 2016 ). Further, there is consensus that senior management requires a new digital mindset in order to captain their company’s digital transformation journey. Therefore, incumbents should also rethink their leadership education practices. In the past, leadership programs have been primarily about leadership and communication skills. But in times of digital transformation, executives must become ‘tech visionaries’ and develop their transformative powers. For example, Sia et al. ( 2016 ) have conducted a case study on an Asian bank that uses hackathons to educate their senior managers. Media transparency and exposure are further key challenges of digitization where top managers may require some additional education. Given the ubiquity of information and the speed of online data dissemination (via mobile phones, viral effects of social media etc.), leaders today are significantly more exposed publicly than their analog predecessors. Therefore, according to Bennis ( 2013 ) leadership in the digital era needs to be learned through embracing transparency and adaptive capacity (specifically resilience as the ability to rebound from problems and crisis).

Finally, the vast extent and complexity of digital transformation leads to the emergence of an additional position at the top management level—the Chief Digital Officer (Dremel et al. 2017 ; Tumbas et al. 2017 ). Given the immense challenges of digital transformation and the claim for a new mindset and different skills, CEOs or even CIOs are conceivably not the best match (Singh and Hess 2017 ). Particularly not if they are expected to drive digital transformation in addition to their original tasks.

4.3.2 Managerial and organizational capabilities

Our analysis suggests that in order to effectively drive digital transformation additional and refined capabilities are required—both managerial and organizational (Li et al. 2017 )—in comparison to the analogue world.

At the managerial level, for one thing, a much faster strategy and implementation cycle is needed to cope with the pace of digital transformation (Daniel and Wilson 2003 ). The turbulent and ever-changing digital environment is forcing managers to make decisions and implement strategies significantly faster than they had been previously required to. In order to study managerial capabilities in the context of digital transformation, some studies have adopted the theory of dynamic capabilities (Daniel and Wilson 2003 ; Li et al. 2017 ; Yeow et al. 2018 ) as introduced by Teece et al. ( 1997 ), Teece ( 2007 , 2014 ). In particular, results indicate that dynamic capabilities may support the refinement of digital strategy and are therefore not separate from alignment, but on the contrary have the potential to enact and guide the process of aligning.

At the organizational level, one of the most intriguing challenges for incumbents will be to manage the ambidexterity of capabilities in terms of analog and digital capabilities. Firms need to incorporate ‘old’ and ‘new’ capabilities into their organizational structure in a complementary and not impeding way. In addition, capabilities in two further areas are of particular importance to many firms. First, capabilities to implement and operate in networks (Bharadwaj et al. 2013 ), platforms (Li et al. 2017 ; Sebastian et al. 2017 ), and ecosystems (El Sawy et al. 2016 ; Weill and Woerner 2015 ). Depending on contextual factors like for example their industry or business model, companies must learn to take advantage of network effects in terms of complementary capabilities while also learn how to become more of an ecosystem rather than continue managing value chains. Second, in the digital era it is essential to develop sensing capabilities, such as entrepreneurial alertness and environmental scanning (Kohli and Melville 2019 ), in order to identify new ideas and critically evaluate, design, modify and eventually deliver new business models (Berman 2012 ; Daniel and Wilson 2003 ).

4.3.3 Company culture

Digital transformation is not exclusively a technology-driven challenge but requires deep cultural change. Everyone within the organization must be prepared with an adaptive skill set and digital know-how. Two major insights can be identified within the existing literature. First, digital transformation demands a data-sharing and data-driven corporate culture (Dremel et al. 2017 ). Data as such must be recognized much more as a valuable resource and an enabler to become a digital enterprise. This will require higher operational transparency in daily-business and work-routines and a data-sharing mindset among employees. In this sense, incumbents need to develop their informatic culture to an informational culture (Llopis et al. 2004 ). In comparison to an informatic culture, an informational culture values IT as a core element of strategic and tactical decisions and clearly understands the financial and transformative potential of digital technologies. Second, digital transformation may trigger cultural conflict between younger and comparably inexperienced digital employees and older but more experienced pre-digitization employees (Kohli and Johnson 2011 ). Management is well advised to prevent that two different cultures arise within the same organization—a group of employees who understand digital technologies and those who have a long-standing track record in the traditional business but are technologically lagging behind. Facilitating a learning friendly culture (Kohli and Melville 2019 ) and publicly affirming support and trust by the executive level may effectively mitigate such a potential cultural divide.

4.3.4 Work environment

Our review reveals that digital transformation is changing the daily work environment in incumbent firms in terms of work structures (Hansen and Sia 2015 ; Loebbecke and Picot 2015 ), job roles, and workplace requirements (White 2012 ). For example, digital interconnectivity enables the emergence of flexible and networked cross-location teams across the entire geographical company map. In this context, traditional hierarchical work structures dissolve and new opportunities emerge beyond company boundaries, such as the integration of external freelancers (Loebbecke and Picot 2015 ). Also, the implementation of a digital workplace becomes inevitable. Particularly for ‘born digital’ younger employees a digitally well-equipped workplace may represent a major criterion for their choice of employer (El Sawy et al. 2016 ). According to White ( 2012 ), a digital workplace must be adaptive, compliant, imaginative, predictive, and location-independent.

However, the most notable insight in this perspective is that—in addition to a potential cultural divide—digitization may effectively lead to a growing skills gap between pre-digitization workers and recently hired digitally savvy employees (Kohli and Johnson 2011 ). In fact, while digital technologies significantly help to optimize and accelerate many work processes and thereby increase productivity, incumbents must be aware that many employees might not keep pace with this digital high-speed train and feel left behind. It is unclear how such a tradeoff is considered and how firms could handle related conflicts.

5 Avoiding an ivory tower: drawing on existing knowledge from adjacent research fields

We assume that pre-existing knowledge on corporate transformation processes in general is partly already available and may provide implications for digital transformation. Therefore, at this point in our review, we aim to stimulate a theoretical discussion by identifying potential white spots abstracted from adjacent research fields. For this purpose, we additionally reviewed 28 studies from the literature on technological disruption (to gain technology-centric input) and 32 papers from corporate entrepreneurship (to expand the actor-centric view). By this, we supplement the pre-dominantly IS-based digital transformation literature with a broader management perspective. First, by reviewing the literature on disruptive innovations we hope to derive implications regarding technology adoption and integration. Burdened with the legacy of old technology, bureaucratic structures and core rigidities (Leonard-Barton 1992 ), incumbents may face major challenges in this respect during their digital transformation journey. Second, we expect corporate entrepreneurship to add a more holistic perspective on firm-internal aspects during the process of transformation, such as management contribution or the impact of knowledge and learning.

We rigorously conducted the same review and analysis process as for our digital transformation sample. A database and concept matrix (Webster and Watson 2002 ) for the sample on technological disruption and corporate entrepreneurship are provided in Tables  6 and 7 of “ Appendix ”. The data structures, which summarize the second order themes for both the actor-centric and technology-centric dimension of these additional research fields are illustrated in Figs.  5 and 6 of “ Appendix ”. Within the main body of this article, we only draw attention toward three key implications (Fig.  4 ). In the following, we provide a brief synthesis of these implications and their grounding in the respective literature. In a second step, we transfer and apply these implications to the context of digital transformation and integrate them into an agenda for future research opportunities.

figure 4

Expanding the digital transformation high-level thematic map with insights from technological disruption and corporate entrepreneurship

5.1 Insights from technological disruption

Existing knowledge from the adoption of disruptive technologies suggests that in order to successfully integrate, commercialize or develop disruptive technologies incumbents need to create organizations that are independent from but interconnected in one way or another with the mainstream business (Bower and Christensen 1995 ). The reasons for this are manifold. For example, managers are encouraged to protect disruptive technologies from the processes and incentives that are targeted to serve established customers. Rather, disruptive innovations should be placed in separate new organizations that work with future customers for this technology (Bower and Christensen 1995 ; Gans 2016 ). Further, separation potentially helps to unravel the discord between viewing disruptive innovations as a threat or an opportunity. Exempted from obligations to a parent company, separate ventures are more likely to perceive a novel technology as an opportunity (Gilbert and Bower 2002 ). And lastly, a freestanding business also enables local adaptation and increased sensitivity to changes in the environment (Hill and Rothaermel 2003 ).

5.2 Insights from corporate entrepreneurship

Our review of the corporate entrepreneurship literature identifies two major implications that have not been (adequately) considered in digital transformation research yet.

First, the literature indicates that middle management plays a crucial role in redefining a firm’s strategic context and by this driving organizational transformation. A middle management perspective has thus far been completely neglected in digital transformation research. We see this as a major gap, since the middle layers of management are ‘where the action is’ (Floyd and Wooldridge 1999 , p. 124). Top management should control the level and the rate of change and ensure that entrepreneurial activities correspond to their strategic vision (Burgelman 1983 ), but middle managers at the implementation level are the driving force and key determinant behind organizational transformation. However, on the downside, middle managers may also represent a major barrier to organizational change (Thornberry 2001 ). Typically, managers have the task to minimize risks, make sure everything is compliant to the rules and perform their functional roles. Thus, middle managers usually have the most to lose from radical changes and are therefore often the least likely to be entrepreneurial or to support transformations (Thornberry 2001 ). In order to solve middle and operational manager’s risk-awareness and unleash their entrepreneurial spirit, research suggests encouraging autonomous behavior (Shimizu 2012 ). In sum, reviewing the literature on corporate entrepreneurship raises our awareness for the impact of hierarchy and management levels on organizational transformation (Hornsby et al. 2009 ).

Second, a closer cooperation and regular exchange between incumbents and start-ups in order to accelerate entrepreneurial transformation is proposed (Engel 2011 ; Kohler 2016 ). Incumbents should recognize start-up companies as a source of external innovation and develop suitable models for collaboration (e.g. corporate accelerators). In particular, incumbents are advised to implement three common best practices from successful start-ups in order to facilitate transformation: (1) working in small omni-functional teams, (2) goal-driven rapid development instead of bureaucratic processes, and (3) field-level exploration of market potential instead of complex and tedious quantitative models (Engel 2011 ). In addition, corporate entrepreneurship underlines the importance of organizational learning as a vehicle to drive and shape cultural transformation (Dess et al. 2003 ; Floyd and Wooldridge 1999 ; Zahra 2015 ). We come to understand that learning, and in fact also knowledge management, are intimately tied to the concept of organizational transformation. A culture of learning and knowledge drives experimentation, encourages the development of an adaptive skill set, reshapes competitive positioning, and opens the minds of employees to new realities (Zahra et al. 1999 ).

6 Opportunities for future research

Based on the cross-disciplinary perspectives from reviewing the literature on digital transformation, technological disruption and corporate entrepreneurship, we propose opportunities for future research on digital transformation. Using our thematic map as a lens to view future research opportunities, we focus on the two dimensions of technology and actor. For the technology-centric dimension we expand on the structural and operational integration of digital technologies and organizational transformation initiatives as well as gaining a deeper understanding of the pace of technological transformation. For the actor-centric dimension we address three topics: we start at the leadership level by emphasizing the relevance of middle management in digital transformation, after that we refer to the potential skills gap and threat of an employee divide in incumbent organizations induced by digital technologies, and finally we move beyond organizational boundaries to turn toward the potential benefits and drawbacks of cooperating with start-ups and pure digital companies to boost transformation. For each area, we propose a set of research questions. Altogether, the agenda is organized around five guiding topics (Table  3 ).

6.1 Integration of digital transformation within organizational structures and activities in incumbent firms

Our review of the literature on digital transformation reveals a knowledge gap regarding this topic. However, we do gain some interesting cross-disciplinary insights from technological disruption at this point. In fact, as already discussed, studies on technological disruption indicate that in order to successfully integrate, commercialize or develop disruptive technologies incumbents need to create organizations that are completely independent from but interconnected in one way or another with the mainstream business (Bower and Christensen 1995 ; Gans 2016 ; Gilbert and Bower 2002 ; Hill and Rothaermel 2003 ).

Thus, the question arises as to how incumbents should incorporate their digital transformation activities. Several options and interesting questions arise in this matter that future research may investigate on:

Which forms of organizational architecture are most suitable for digital transformation? Seamless integration of digital technologies requires building an agile and scalable digital infrastructure that enables continuous scalability of new initiatives (Sia et al. 2016 ). For example, Resca et al. ( 2013 ) suggest a platform-based organization. In addition, digital transformation demands a new kind of enterprise platform integration (El Sawy et al. 2016 ). Given the high intensity of interactive digital connectivity between the outside and inside of a company, traditional enterprise platforms (like ERP) and the ‘old’ supply chain management integration paradigm are in many cases not the most suitable solution anymore. Therefore, flexible IT is a key transformation resource in the digital world (Cha et al. 2015 ). Pursuing an open innovation approach might be another alternative for incumbents.

When and why is it an advantage/disadvantage to start digital transformation in a new organization which is completely independent from traditional business, as suggested by technological disruption research? Under what circumstances and why do spill - over - effects to the parent organization happen/not happen? ? For example, Ravensburger AG , a German toy and jigsaw puzzle company, founded Ravensburger Digital GmbH as a subsidiary in 2009. The purpose of the subsidiary was to become the firm’s digital competence center. In 2017, the digital subsidiary was reincorporated in the parent organization as a digital unit with the goal to apply their digital knowledge to transform the traditional business segments. We call for more qualitative case study research devoted to this question to develop our understanding in this topic.

How, when, and why do incumbents benefit from adopting a ‘let a hundred flowers bloom’ philosophy versus taking a ‘launch, learn, pivot’ approach? In the first scenario, a company would start its digital initiatives across all divisions simultaneously and locally to encourage broad experimentation. Such an approach was adopted by AmerisourceBergen Corp. , an American drug wholesale company. The company is convinced that digital transformation is a matter of culture that needs to be established across the entire organization. For this purpose, it implemented agile project teams throughout the entire enterprise, of which each focused on different aspects. On the downside, companies following such a broad approach may risk losing focus and at some point, the various initiatives may start competing against each other. Hence, we believe it is crucial to have a big picture in mind and accordingly allocate resources and attention very thoughtfully. Alternatively, incumbents may start with a pilot transformation project in a smaller market or subsidiary. Arguably, a major advantage is the opportunity to assure that customers are happy with the transformation results and everything is working out well before starting the large roll out in other markets. And it provides incumbents time to fine-tune their initiatives. For example, American medical company Alcon premiered their initial transformation efforts in Brazil before ramping up their rollout in 27 further countries.

6.2 Pace of digital transformation

The rapid pace of technological change is perhaps the most defining characteristic of digital transformation in distinction to previous IT-enabled transformations. Yet, as this topic is only addressed by four papers in our sample it is still to be studied in more depth. For example, there is consensus among the studies that the pace of change has accelerated significantly, however the parameters that define the pace of change remain yet to be defined. Further, we are informed that some industries like the newspaper business have been digitally transformed within a very short period of time (Karimi and Walter 2015 ), while other branches are still under transformation or are yet to be converted. We posit two exemplary research questions regarding the pace of digital transformation:

What are the parameters that define the pace of change? Our review reveals that the speed of product launches (Bharadwaj et al. 2013 ) and the time it takes to turn an idea into a business (Vey et al. 2017 ) are two potential indicators, but we certainly need to obtain a more comprehensive conceptualization at this point.

Why do industries adopt to digital transformation at a different speed? For example, consider front-runner industries like the media or publishing versus late-comers such as oil and gas. In this specific case, the easiness to dematerialize and digitize the product portfolio is certainly a main reason. However, other industries are less obvious, and we would like to invite future research to investigate upon these conditions. What are the parameters that define whether an industry is more or less transformative?

6.3 The role of middle management in digital transformation

We have learned from our review of the corporate entrepreneurship literature that middle managers are the locus of organizational transformation in incumbent firms (Floyd and Wooldridge 1999 ; Hornsby et al. 2002 , 2009 ; Shimizu 2012 ). While top management controls the level and rate of change, middle managers are in charge of execution (Burgelman 1983 ). Hence, one may conclude that middle managers are the kingpin of digital transformation. Yet, there is not a single paper in our sample that covers a middle management perspective in digital transformation. We believe that this subject has been highly neglected in research to this point and deserves far more attention in future. Several topics are particularly interesting:

How and why is digital transformation affecting the role, tasks and identity of middle managers? How and why do middle managers react to these changes? Based on our review, we expect a deep change in the nature of middle management’s role and influence in a ‘digitally transformed’ company ranging from administration to leadership aspects. Middle managers require a new attitude as they move from directing and controlling stable processes and people at the middle of hierarchy to managing resources and connecting people in the middle of networks. In addition, middle managers in the digital era must step up to their role of supporting, enabling, and coaching people to use the available digital tools. They are expected to facilitate the organization.

What kind of new responsibilities and functions in middle management hierarchy are required to accelerate digital transformation? The odds are that change fatigue might grow on employees and digital transformation may start faltering. For this purpose, horizontal functions such as business-process management layers or central administration platforms may be implemented (McKinsey & Company 2017 ). They could be shared across multiple initiatives within the organization and help to accelerate transformation.

Which mindset and digital literacy do middle managers need to be the driving force behind digital transformation? How, when, and why are middle managers motivated/not motivated to drive transformation? Research on corporate entrepreneurship emphasizes that middle managers are often the least likely to support change as they are inherently risk-averse, hardly entrepreneurial and very attached to their functional routines (Thornberry 2001 ). In addition, middle managers may easily get stressed about their ‘sandwich’ position in-between senior management and the operational level. So how can we expect middle managers to be the speedboat of digital transformation? Also, incumbents need to carefully evaluate the existing digital skills and literacy of their middle managers. How comfortable do they feel with digital tools, social media, the cloud and similar trends? They may not fulfill their coaching and leadership role if they heavily struggle with technology in the first place.

How and why is digital transformation affecting the interface of the top management team (TMT) and middle managers? The relationship between the TMT and middle managers is a very special and important relationship which significantly affects both strategy formulation and the quality of implementation. Middle managers are the organizational ‘linking pins’ between top and operational level and thus heavily rely on a good exchange with their superiors. To what extent and in which ways does digital transformation affect this special leader–follower relationship? How are digital technologies changing the speed and quality of information exchange? What is the impact on the inter-personal level?

What is the impact of digital transformation on the overall importance of the middle management layer? Since the 1950s, research indicates the decline of middle managers in terms of both numbers and influence (Dopson and Stewart 1993 ; Leavitt and Whisler 1958 ; Pinsonneault and Kraemer 1997 ). The shift in emphasis from planning and controlling to speed and flexibility is severely affecting the assumedly ‘slow’ middle. Are middle managers afraid that digital technologies will replace most of their traditional tasks and functions, e.g. communicating and monitoring strategy? Will digitalization naturally empower lower level operational managers at the bottom and consequently eliminate the middle layer?

6.4 A growing skills gap and threat of an employee divide

Given the complexity and explosive pace of digital technologies, there is a threat of a growing skills gap between pre-digitization workers and recently hired digitally savvy employees (Kohli and Johnsons 2011 ). A couple of topics are particularly interesting for future research:

How, when and why are incumbents able/unable to mitigate a growing skills gap and employee divide in the face of digital transformation? Given the increased complexity of digital technologies, traditional IT trainings may not be effective anymore. In a similar vein, how could different levels of knowledge and experience residing within different employees be integrated in the context of digital transformation? Future research might examine the mechanisms required for facilitating or hindering such an integration.

How and when are incumbents able/unable to incorporate ‘old’ and ‘new’ capabilities within their organization? On the one hand firms need to develop new capabilities to continuously transform their business, while on the other hand they must leverage their existing knowledge and skills in order to maintain their existing operations. Thus, for the time of transformation incumbents need to develop multiple, often inconsistent competencies simultaneously. In this context, how do firms ensure not to lose focus while mastering the challenge of ambidexterity in times of digital transformation?

Who in the company is managing the development and transformation of skills (e.g. HR, senior leadership, IT division, functional teams, employees etc .), and how and why does that impact outcomes of digital transformation ? This question is not addressed by current research at all. However, according to a survey (Capgemini Consulting 2013) this lack of alignment with digital strategy is rather worrisome. Responsibilities for skills transformation and development in times of digitization need to be clearly defined and allocated. Empirical academic research in this direction might be helpful to understand the status-quo in incumbent firms regarding this issue.

6.5 Cooperation with startups and pure tech companies to accelerate digital transformation

Corporate entrepreneurship proposes a closer cooperation and regular exchange between incumbents and start-ups in order to accelerate entrepreneurial transformation (Engel 2011 ; Kohler 2016 ). In fact, start-ups are often perceived as the forerunners of digital transformation. They are praised for faster innovation capabilities, higher levels of agility, a culture of risk-taking, and supremely digitized processes and workflows. In contrast, incumbents have more experience, access to capital, established brand trust and a huge customer base. Hence, a cooperation between start-ups and incumbents may be beneficial for both parties. In addition, non-tech incumbents may also consider cooperating with pure digital players which are beyond their start-up phase but are important knowledge carriers in digital matters. Two topics are particularly interesting:

Assuming that successful start - ups have a good digital culture — what are the constituent pillars of such a digital culture? And how could incumbents incorporate these “best practices” and “lessons learned”?

What are the benefits of employee exchange programs with technology companies or start - ups to scale - up digital skills? For example, in early 2008 consumer goods giant Procter and Gamble and Google have been swapping two dozen employees in an effort to foster creativity, exchange thoughts on online advertisement and strengthen their mutual relationship. This program worked very well for both sides.

7 Limitations and conclusion

Our review is not without limitations. First, the specific objectives and nature of our filtering process applied during the review naturally come with a certain selection bias. For example, data collection, analysis and interpretation remain influenced by the subjective assessments of the researchers. Also, despite being the common rule within systematic literature reviews, searching exclusively in peer-reviewed academic journals might have omitted some relevant research contained in books or dissertations. However, by means of a rigorous and transparent search process, an as complete as possible review sample was collected and analyzed subsequently. Second, using a high-level thematic map for such a complex multi-dimensional phenomenon like digital transformation highlights particular connections while it potentially fails to capture others. Specifically, critics may point to the lack of analytical depth within each second order theme. However, we believe that within the limited scope of a review our broad thematic description nevertheless adds value to the advancement of this field and should rather be seen as a holistic starting point for future research to dive deeper into the characteristics of sub-themes of digital transformation. Finally, we are aware that our focus on the organizational level of digital transformation within the private sector does not fully capture the implications of digital transformation for our society, as it also occurs at various other levels, such as the individual level or public sector. As such, future researchers may apply alternative approaches to review and synthesize the existing literature on digital transformation. For example, in contrast to our inductive method to code and analyze our sample, it may also be interesting to apply a more deductive and pre-structured method, in particular when focusing on a deeper understanding of the sub-themes emerging from our analysis. Accordingly, future research could benefit from adopting a phenomenon-based research strategy as proposed by von Krogh et al. ( 2012 ).

Concluding, our paper contributes to the extant discussion by consolidating, mapping and analyze the existing research on digital transformation, sharing important macro- and microlevel observations in the literature and proposing corresponding future research directions. Emerging from our review of 58 studies, we develop a thematic map which identifies technology and actor as the two aggregate dimensions of digital transformation and that elaborates on the predominant contextual concepts (second order themes) within these dimensions. From a macrolevel perspective, we observe that the status-quo of digital transformation literature is rather diverse, in a sense that papers discuss topics across various clusters and concepts. Further, we find some degree of diversity in the theoretical foundations drawn upon as well as confirm that the existing literature in general is scarce regarding quantitative empirical evidence. Another important contribution of our paper is bringing different lenses together by integrating knowledge from related disciplinary areas outside IS management, such as technological disruption and corporate entrepreneurship. With our review, we hope to provide a comprehensive and solid foundation for the on-going discussions on digital transformation and to stimulate future research on this exciting topic.

The development of clear and precise aims and objectives; pre-planned methods; a comprehensive search of all potentially relevant articles; the use of explicit, reproducible criteria in the selection of articles; an appraisal of the quality of the research and the strength of the findings; a synthesis of individual studies using an explicit analytic framework; and a balanced, impartial and comprehensible presentation of the results.

The search included Academy of Management Journal , Administrative Science Quarterly , Entrepreneurship Theory and Practice , Journal of Management Studies , Strategic Management Journal .

The search included European Journal of Information Systems , Information Systems Journal , Information Systems Research , Journal of the Association for Information Systems , Journal of Information Technology , Journal of Management Information Systems , Journal of Strategic Information Systems , MIS Quarterly , MISQ Executive .

Ahuja G, Morris Lampert C (2001) Entrepreneurship in the large corporation: a longitudinal study of how established firms create breakthrough inventions. Strateg Manag J 22:521–543

Google Scholar  

Alos-Simo L, Verdu-Jover AJ, Gomez-Gras JM (2017) How transformational leadership facilitates e-business adoption. Ind Manag Data Syst 117:382–397

Anderson P, Tushman ML (1990) Technological discontinuities and dominant designs: a cyclical model of technological change. Adm Sci Q 35:604–633

Ash CG, Burn JM (2003) Assessing the benefits from e-business transformation through effective enterprise management. Eur J Inf Syst 12:297–308

Bartunek JM, Rynes SL, Ireland RD (2006) What makes management research interesting, and why does it matter. Acad Manag J 49:9–15

Bennis W (2013) Leadership in a digital world: embracing transparency and adaptive capacity. MIS Q 37:635–636

Bergek A, Berggren C, Magnusson T, Hobday M (2013) Technological discontinuities and the challenge for incumbent firms: destruction, disruption or creative accumulation? Res Policy 42:1210–1224

Berman SJ (2012) Digital transformation: opportunities to create new business models. Strategy Leadersh 40:16–24

Berman SJ, Davidson S, Ikeda K, Korsten PJ, Marshall A (2016) How successful firms guide innovation: insights and strategies of leading CEOs. Strategy Leadersh 44:21–28

Besson P, Rowe F (2012) Strategizing information systems-enabled organizational transformation: a transdisciplinary review and new directions. J Strateg Inf Syst 21:103–124

Bharadwaj A, El Sawy O, Pavlou P, Venkatraman N (2013) Digital business strategy: toward a next generation of insights. MIS Q 37:471–482

Birkinshaw J (1997) Entrepreneurship in multinational corporations: the characteristics of subsidiary initiatives. Strateg Manag J 18:207–229

Bower JL, Christensen CM (1995) Disruptive technologies: catching the wave. Harv Bus Rev 73:43–53

Burgelman RA (1983) Corporate entrepreneurship and strategic management: insights from a process study. Manag Sci 29:1349–1364

Cha KJ, Hwang T, Gregor S (2015) An integrative model of IT-enabled organizational transformation: a multiple case study. Manag Decis 53:1755–1770

Chatterjee D, Grewal R, Sambamurthy V (2002) Shaping up for e-commerce: institutional enablers of the organizational assimilation of web technologies. MIS Q 26:65–89

Chen J, Nadkarni S (2017) It’s about time! CEOs’ temporal dispositions, temporal leadership, and corporate entrepreneurship. Adm Sci Q 62:31–66

Christensen CM (1997) The innovator’s dilemma. When new technologies cause great firms to fail. Harvard Business School Press, Boston

Christensen CM, Raynor ME (2003) Why hard-nosed executives should care about management theory. Harv Bus Rev 81:66–75

Corbett A, Covin JG, O’Connor GC, Tucci CL (2013) Corporate entrepreneurship: state-of-the-art research and a future research agenda. J Prod Innov Manag 30:812–820

Corley KG, Gioia DA (2004) Identity ambiguity and change in the wake of a corporate spin-off. Adm Sci Q 49:173–208

Covin JG, Miles MP (1999) Corporate entrepreneurship and the pursuit of competitive advantage. Entrepreneursh Theory Pract 23:47–63

Crossan MM, Apaydin M (2010) A multi-dimensional framework of organizational innovation: a systematic review of the literature. J Manag Stud 47:1154–1191

Cui M, Pan SL (2015) Developing focal capabilities for e-commerce adoption: a resource orchestration perspective. Inf Manag 52(2):200–209

Daniel EM, Wilson HN (2003) The role of dynamic capabilities in e-business transformation. Eur J Inf Syst 12:282–296

Danneels E (2004) Disruptive technology reconsidered: a critique and research agenda. J Prod Innov Manag 21:246–258

DaSilva CM, Trkman P, Desouza K, Lindič J (2013) Disruptive technologies: a business model perspective on cloud computing. Technol Anal Strateg Manag 25:1161–1173

Denyer D, Neely A (2004) Introduction to special issue: innovation and productivity performance in the UK. Int J Manag Rev 5:131–135

Dess GG, Ireland RD, Zahra SA, Floyd SW, Janney JJ, Lane PJ (2003) Emerging issues in corporate entrepreneurship. J Manag Stud 29:351–378

Dijkman RM, Sprenkels B, Peeters T, Janssen A (2015) Business models for the Internet of Things. Int J Inf Manag 35(6):672–678

Doherty NF, King M (2005) From technical to socio-technical change: tackling the human and organizational aspects of systems development projects. Eur J Inf Syst 14:1–5

Dopson S, Stewart R (1993) Information technology, organizational restructuring and the future of middle management. New Technol Work Employ 8(1):10–20

Downes L, Nunes P (2013) Big bang disruption. Harv Bus Rev 91:44–56

Dremel C, Wulf J, Herterich MM, Waizmann JC, Brenner W (2017) How AUDI AG established big data analytics in its digital transformation. MIS Q Exec 16(2):81–100

Dushnitsky G, Lenox MJ (2005) When do incumbents learn from entrepreneurial ventures? Corporate venture capital and investing firm innovation rates. Res Policy 34(5):615–639

El Sawy OA, Malhotra A, Park Y, Pavlou PA (2010) Research commentary-seeking the configurations of digital ecodynamics: it takes three to tango. Inf Syst Res 21(4):835–848

El Sawy OA, Kræmmergaard P, Amsinck H, Vinther AL (2016) How LEGO built the foundations and enterprise capabilities for digital leadership. MIS Q Exec 15(2):141–166

Engel JS (2011) Accelerating corporate innovation: lessons from the venture capital model. Res-Technol Manag 54(3):36–43

Evens T (2010) Value networks and changing business models for the digital television industry. J Media Bus Stud 7(4):41–58

Fichman RG, Dos Santos BL, Zheng Z (2014) Digital innovation as a fundamental and powerful concept in the information systems curriculum. MIS Q 38(2):329–A15

Fisch C, Block J (2018) Six tips for your (systematic) literature review in business and management research. Manag Rev Q 68:103–106

Floyd SW, Wooldridge B (1999) Knowledge creation and social networks in corporate entrepreneurship: the renewal of organizational capability. Entrepreneursh Theory Pract 23(3):123–144

Fuetsch E, Suess-Reyes J (2017) Research on innovation in family businesses: are we building an ivory tower? J Fam Bus Manag 7(1):44–92

Gans JS (2016) Keep calm and manage disruption. MIT Sloan Manag Rev 57(3):83–90

Gawer A, Cusumano MA (2014) Industry platforms and ecosystem innovation. J Prod Inov Manag 31(3):417–433

Gerstner WC, König A, Enders A, Hambrick DC (2013) CEO narcissism, audience engagement, and organizational adoption of technological discontinuities. Adm Sci Q 58(2):257–291

Gerth AB, Peppard J (2016) The dynamics of CIO derailment: how CIOs come undone and how to avoid it. Bus Horiz 59(1):61–70

Gilbert C, Bower JL (2002) Disruptive change. When trying harder is part of the problem. Harv Bus Rev 80(5):94–101

Gioia DA, Thomas JB, Clark SM, Chittipeddi K (1994) Symbolism and strategic change in academia: the dynamics of sensemaking and influence. Org Sci 5(3):363–383

Granados N, Gupta A (2013) Transparency strategy: competing with information in a digital world. MIS Q 37(2):637–641

Grover V, Kohli R (2013) Revealing your hand: caveats in implementing digital business strategy. MIS Q 37(2):655–662

Günther WA, Mehrizi MHR, Huysman M, Feldberg F (2017) Debating big data: a literature review on realizing value from big data. J Strateg Inf Syst 26:191–209

Günzel F, Holm AB (2013) One size does not fit all—understanding the front-end and back-end of business model innovation. Int J Innov Manag 17(1):1340002-1–1340002-34

Guth WD, Ginsberg A (1990) Guest editors’ introduction: corporate entrepreneurship. Strateg Manag J 11:5–15

Habtay SR, Holmén M (2014) Incumbents’ responses to disruptive business model innovation: the moderating role of technology vs. market-driven innovation. Int J Entrep Innov Manag 18(4):289–309

Hagberg J, Sundstrom M, Egels-Zandén N (2016) The digitalization of retailing: an exploratory framework. Int J Retail Distrib Manag 44(7):694–712

Hansen R, Sia SK (2015) Hummel’s digital transformation toward omnichannel retailing: key lessons learned. MIS Q Exec 14(2):51–66

Hess T, Matt C, Benlian A, Wiesböck F (2016) Options for formulating a digital transformation strategy. MIS Q Exec 15(2):123–139

Hill CW, Rothaermel FT (2003) The performance of incumbent firms in the face of radical technological innovation. Acad Manag Rev 28(2):257–274

Hitt M, Ireland R, Camp S, Sexton D (2001) Strategic entrepreneurship: entrepreneurial strategies for wealth creation. Strateg Manag J 22:479–491

Holm AB, Günzel F, Ulhøi JP (2013) Openness in innovation and business models: lessons from the newspaper industry. Int J Technol Manag 61(3/4):324–348

Hornsby JS, Kuratko DF, Zahra SA (2002) Middle managers’ perception of the internal environment for corporate entrepreneurship: assessing a measurement scale. J Bus Vent 17(3):253–273

Hornsby JS, Kuratko DF, Shepherd DA, Bott JP (2009) Managers’ corporate entrepreneurial actions: examining perception and position. J Bus Ventur 24(3):236–247

Hu H, Huang T, Zeng Q, Zhang S (2016) The role of institutional entrepreneurship in building digital ecosystem: a case study of Red Collar Group (RCG). Int J Inf Manag 36(3):496–499

Ireland RD, Covin JG, Kuratko DF (2009) Conceptualizing corporate entrepreneurship strategy. Entrepreneursh Theory Pract 33(1):19–46

Ives B, Palese B, Rodriguez JA (2016) Enhancing customer service through the internet of things and digital data streams. MIS Q Exec 15(4):279–297

Johnson M (2010) Barriers to innovation adoption: a study of e-markets. Ind Manag Data Syst 110(2):157–174

Johnson MW, Christensen CM, Kagermann H (2008) Reinventing your business model. Harv Bus Rev 86(12):50–59

Jones O, Gatrell C (2014) Editorial: the future of writing and reviewing for IJMR. Int J Manag Rev 16(3):249–264

Karimi J, Walter Z (2015) The role of dynamic capabilities in responding to digital disruption: a factor-based study of the newspaper industry. J Manag Inf Syst 32(1):39–81

Karimi J, Walter Z (2016) Corporate entrepreneurship, disruptive business model innovation adoption, and its performance: the case of the newspaper industry. Long Range Plan 49(3):342–360

Kauffman RJ, Walden EA (2001) Economics and electronic commerce: survey and directions for research. Int J Electric Commun 5(4):5–116

Keen P, Williams R (2013) Value architectures for digital business: beyond the business model. MIS Q 37(2):643–648

Khandwalla PN (1987) Generators of pioneering-innovative management: some Indian evidence. Org Stud 8(1):39–59

Koen PA, Bertels H, Elsum IR, Orroth M, Tollett BL (2010) Breakthrough innovation dilemmas. Res Technol Manag 53(6):48–51

Kohler T (2016) Corporate accelerators: building bridges between corporations and startups. Bus Horiz 59(3):347–357

Kohli R, Johnson S (2011) Digital transformation in latecomer industries: CIO and CEO Leadership Lessons from Encana Oil and Gas (USA) Inc. MIS Q Exec 10(4):141–156

Kohli R, Melville NP (2019) Digital innovation: a review and synthesis. Inf Syst J 29(1):200–223

Kuratko DF, Covin JG, Hornsby JS (2014) Why implementing corporate innovation is so difficult. Bus Horiz 57(5):647–655

Lant TK, Mezias SJ (1990) Managing discontinuous change: a simulation study of organizational learning and entrepreneurship. Strateg Manag J 11:147–179

Lanzolla G, Anderson J (2008) Digital transformation. Bus Strateg Rev 19(2):72–76

Lavie D (2006) Capability reconfiguration: an analysis of incumbent responses to technological change. Acad Manag Rev 31(1):153–174

Leavitt HJ, Whisler TL (1958) Management in the 1980’s. In: Technology, organizations and innovation. London and New York, pp 41–48

Leonard-Barton D (1992) Core capabilities and core rigidities: a paradox in managing new product development. Strateg Manag J 13(S1):111–125

Leong C, Tan B, Xiao X, Tan FTC, Sun Y (2017) Nurturing a FinTech ecosystem: the case of a youth microloan startup in China. Int J Inf Manag 37(2):92–97

Li L, Su F, Zhang W, Mao JY (2017) Digital transformation by SME entrepreneurs: a capability perspective. Inf Sys J 28(6):1129–1157

Ling YAN, Simsek Z, Lubatkin MH, Veiga JF (2008) Transformational leadership’s role in promoting corporate entrepreneurship: examining the CEO-TMT interface. Acad Manag J 51(3):557–576

Liu DY, Chen SW, Chou TC (2011) Resource fit in digital transformation: lessons learned from the CBC Bank global e-banking project. Manag Decis 49(10):1728–1742

Llopis J, Gonzalez MR, Gasco JL (2004) Transforming the firm for the digital era: an organizational effort towards an E-culture. Hum Syst Manag 23(4):213–225

Locke K (2001) Grounded theory in management research. Sage, London

Loebbecke C, Picot A (2015) Reflections on societal and business model transformation arising from digitization and big data analytics: a research agenda. J Strateg Inf Syst 24(3):149–157

Lucas HC Jr, Goh JM (2009) Disruptive technology: how Kodak missed the digital photography revolution. J Strateg Inf Syst 18(1):46–55

Lumpkin GT, Dess GG (1996) Clarifying the entrepreneurial orientation construct and linking it to performance. Acad Manag J 2(1):135–172

Lyytinen K, Yoo Y, Boland RJ Jr (2016) Digital product innovation within four classes of innovation networks. Inf Sys J 26(1):47–75

Majchrzak A, Markus ML, Wareham J (2016) Designing for digital transformation: lessons for information systems research from the study of ICT and societal challenges. MIS Q 40(2):267–277

Marion T, Dunlap D, Friar J (2012) Instilling the entrepreneurial spirit in your RandD team: what large firms can learn from successful start-ups. IEEE Trans Eng Manag 59(2):323–337

Markus ML (2004) Technochange management: using IT to drive organizational change. J Inf Technol 19(1):4–20

Markus ML, Benjamin RI (1997) The magic bullet theory in IT-enabled transformation. Sloan Manag Rev 38:55–68

Markus ML, Loebbecke C (2013) Commoditized digital processes and business community platforms: new opportunities and challenges for digital business strategies. MIS Q 37(2):649–654

Matt C, Hess T, Benlian A (2015) Digital transformation strategies. Bus Inf Syst Eng 57(5):339–343

Mazzei MJ, Noble D (2017) Big data dreams: a framework for corporate strategy. Bus Horiz 60(3):405–414

McKinsey & Company (2017) A CEO guide for avoiding the ten traps that derail digital transformations. Digital McKinsey. https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/a-ceo-guide-for-avoiding-the-ten-traps-that-derail-digital-transformations . Accessed 28 July 2018

McWilliams A, Siegel D, Van Fleet DD (2005) Scholarly journals as producers of knowledge: theory and empirical evidence based on data envelopment analysis. Organ Res Methods 8:185–201

Meyer AD, Brooks GR, Goes JB (1990) Environmental jolts and industry revolutions: organizational responses to discontinuous change. Strateg Manag J 11:93–110

Miller D (1983) The correlates of entrepreneurship in three types of firms. Manag Sci 29:770–791

Mithas S, Tafti A, Mitchell W (2013) How a firm’s competitive environment and digital strategic posture influence digital business strategy. MIS Q 37(2):511–536

Moreau F (2013) The disruptive nature of digitization: the case of the recorded music industry. Int J Arts Manag 15(2):18–31

Morton MS (1991) The corporation of the 1990s: information technology and organizational transformation. Oxford University Press, New York

Mulrow CD (1994) Systematic reviews: rationale for systematic reviews. Br Manag J 309:597–599

Naman JL, Slevin DP (1993) Entrepreneurship and the concept of fit: a model and empirical tests. Strateg Manag J 14:137–153

Nambisan S, Lyytinen K, Majchrzak A, Song M (2017) Digital innovation management: reinventing innovation management research in a digital world. MIS Q 41(1):223–238. https://doi.org/10.25300/MISQ/2017/41:1.03

Nason RS, McKelvie A, Lumpkin GT (2015) The role of organizational size in the heterogeneous nature of corporate entrepreneurship. Small Bus Econ 45(2):279–304

Ng IC, Wakenshaw SY (2017) The Internet-of-Things: review and research directions. Int J Res Market 34(1):3–21

Obal M (2013) Why do incumbents sometimes succeed? Investigating the role of interorganizational trust on the adoption of disruptive technology. Ind Market Manag 42(6):900–908

Orlikowski WJ (1996) Improvising organizational transformation over time: a situated change perspective. Inf Syst Res 7(1):63–92

Pagani M (2013) Digital business strategy and value creation: framing the dynamic cycle of control points. MIS Q 37(2):617–632

Paré G, Trudel MC, Jaana M, Kitsiou S (2015) Synthesizing information systems knowledge: a typology of literature reviews. Inf Manag 52(2):183–199

Peltola S (2012) Can an old firm learn new tricks? A corporate entrepreneurship approach to organizational renewal. Bus Horiz 55(1):43–51

Pinsonneault A, Kraemer KL (1997) Middle management downsizing: an empirical investigation of the impact of information technology. Manag Sci 43(5):659–679

Pittaway L, Robertson M, Munir K, Denyer D, Neely A (2004) Networking and innovation: a systematic review of the evidence. Int J Manag Rev 5:137–168

Ranganathan C, Watson-Manheim MB, Keeler J (2004) Bringing professionals on board: lessons on executing IT-enabled organizational transformation. MIS Q Exec 3(3):151–160

Rayna T, Striukova L (2016) From rapid prototyping to home fabrication: how 3D printing is changing business model innovation. Technol Forecast Soc Change 102:214–224

Resca A, Za S, Spagnoletti P (2013) Digital platforms as sources for organizational and strategic transformation: a case study of the Midblue project. J Theor Appl Electron Commer Res 8(2):71–84

Rice MP, O’Connor GC, Peters LS, Morone JG (1998) Managing discontinuous innovation. Res-Technol Manag 41(3):52–58

Rigby DK, Sutherland J, Takeuchi H (2016) Embracing agile. Harv Bus Rev 94(5):40–50

Rindova VP, Kotha S (2001) Continuous “morphing”: competing through dynamic capabilities, form, and function. Acad Manag J 44(6):1263–1280

Rowe F (2014) What literature review is not: diversity, boundaries and recommendations. Eur J Inf Syst 23(3):241–255

Roy R, Sarkar MB (2016) Knowledge, firm boundaries, and innovation: mitigating the incumbent’s curse during radical technological change. Strateg Manag J 37(5):835–854

Sabatier V, Craig-Kennard A, Mangematin V (2012) When technological discontinuities and disruptive business models challenge dominant industry logics: insights from the drugs industry. Technol Forecast Soc Change 79(5):949–962

Sambamurthy V, Bharadwaj A, Grover V (2003) Shaping agility through digital options: reconceptualizing the role of information technology in contemporary firms. MIS Q 27(2):237–263

Sandström CG (2016) The non-disruptive emergence of an ecosystem for 3D Printing—insights from the hearing aid industry’s transition 1989–2008. Technol Forecast Soc Change 102:160–168

Schendel D (1990) Introduction to the special issue on corporate entrepreneurship. Strateg Manag J 11:1–3

Schollhammer H (1982) Internal corporate entrepreneurship. In: Kent CA, Sexton DL, Vesper KH (eds) Encyclopedia of entrepreneurship. Prentice Hall, Englewood Cliffs, pp 209–229

Schuchmann D, Seufert S (2015) Corporate learning in times of digital transformation: a conceptual framework and service portfolio for the learning function in banking organisations. Int J Adv Corp Learn 8(1):31–39

Scott WR (1992) Organizations rational, natural, and open systems. Prentice Hall, Englewood Cliffs

Sebastian IM, Ross JW, Beath C, Mocker M, Moloney KG, Fonstad NO (2017) How big old companies navigate digital transformation. MIS Q Exec 16(3):197–213

Setia P, Venkatesh V, Joglekar S (2013) Leveraging digital technologies: How information quality leads to localized capabilities and customer service performance. MIS Q 37(2):565–590

Seufert S, Meier C (2016) From eLearning to digital transformation: a framework and implications for LandD. Int J Adv Corp Learn 9(2):27–33

Shaughnessy H (2016) Harnessing platform-based business models to power disruptive innovation. Strategy Leadersh 44(5):6–14

Shimizu K (2012) Risks of corporate entrepreneurship: autonomy and agency issues. Org Sci 23(1):194–206

Sia SK, Soh C, Weill P (2016) How DBS bank pursued a digital business strategy. MIS Q Exec 15(2):105–121

Siebels J, Knyphausen-Aufseß D (2012) A review of theory in family business research: the implications for corporate governance. Int J Manag Rev 14:280–304

Singh A, Hess T (2017) How chief digital officers promote the digital transformation of their companies. MIS Q Exec 16(1):1–17

Stopford JM, Baden-Fuller CW (1994) Creating corporate entrepreneurship. Strateg Manag J 15(7):521–536

Svahn F, Mathiassen L, Lindgren R (2017) Embracing digital innovation in incumbent firms: how Volvo cars managed competing concerns. MIS Q 41(1):239–253

Teece DJ (2007) Explicating dynamic capabilities: the nature and microfoundations of (sustainable) enterprise performance. Strateg Manag J 28(13):1319–1350

Teece DJ (2014) A dynamic capabilities-based entrepreneurial theory of the multinational enterprise. J Int Bus Stud 45(1):8–37

Teece DJ, Pisano G, Shuen A (1997) Dynamic capabilities and strategic management. Strateg Manag J 18(7):509–533

Templier M, Paré G (2015) A framework for guiding and evaluating literature reviews. Commun Assoc Inf Syst 37:112–137

Thompson JD, Bates FL (1957) Technology, organization, and administration. Adm Sci Q 2:325–342

Thornberry N (2001) Corporate entrepreneurship: antidote or oxymoron? Eur Manag J 19(5):526–533

Tongur S, Engwall M (2014) The business model dilemma of technology shifts. Technovation 34(9):525–535

Tranfield D, Denyer D, Smart P (2003) Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br J Manag 14(3):207–222

Tumbas S, Berente N, vom Brocke J (2017) Three types of chief digital officers and the reasons organizations adopt the role. MIS Q Exec 16(2):121–134

Turner T, Pennington WW (2015) Organizational networks and the process of corporate entrepreneurship: how the motivation, opportunity, and ability to act affect firm knowledge, learning, and innovation. Small Bus Econ 45(2):447–463

Turró A, Urbano D, Peris-Ortiz M (2014) Culture and innovation: the moderating effect of cultural values on corporate entrepreneurship. Technol Forecast Soc Change 88:360–369

Tushman ML, Anderson P (1986) Technological discontinuities and organizational environments. Adm Sci Q 31:439–465

Urbano D, Turró A (2013) Conditioning factors for corporate entrepreneurship: an in (ex)ternal approach. Int Entrep Manag J 9(3):379–396

Utterback JM (1994) Mastering the dynamics of innovation. Harvard Business School Press, Boston

Vecchiato R (2017) Disruptive innovation, managerial cognition, and technology competition outcomes. Technol Forecast Soc Change 116:116–128

Vey K, Fandel-Meyer T, Zipp JS, Schneider C (2017) Learning and development in times of digital transformation: facilitating a culture of change and innovation. Int J Adv Corp Learn 10(1):22–32

Vom Brocke J, Simons A, Riemer K, Niehaves B, Plattfaut R, Cleven A (2015) Standing on the shoulders of giants: challenges and recommendations of literature search in information systems research. Commun Assoc Inf Syst 37(1):9

von Krogh G, Rossi-Lamastra C, Haefliger S (2012) Phenomenon-based research in management and organisation science: when is it rigorous and does it matter? Long Range Plan 45(4):277–298

von Pechmann F, Midler C, Maniak R, Charue-Duboc F (2015) Managing systemic and disruptive innovation: lessons from the Renault Zero Emission Initiative. Ind Corp Change 24(3):677–695

Webster J, Watson RT (2002) Analyzing the past to prepare for the future: writing a literature review. MIS Q 26(2)::xiii–xxiii

Weill P, Woerner SL (2015) Thriving in an increasingly digital ecosystem. MIT Sloan Manag Rev 56(4):27–34

White M (2012) Digital workplaces: vision and reality. Bus Inf Rev 29(4):205–214

Woodward J (1965) Industrial organization theory and practice. Oxford University Press, New York

Yeow A, Soh C, Hansen R (2018) Aligning with new digital strategy: a dynamic capabilities approach. J Strateg Inf Syst 27(1):43–58

Yoo Y, Henfridsson O, Lyytinen K (2010) Research commentary—the new organizing logic of digital innovation: an agenda for information systems research. Inf Syst Res 21(4):724–735

Yoo Y, Boland RJ Jr, Lyytinen K, Majchrzak A (2012) Organizing for innovation in the digitized world. Organ Sci 23(5):1398–1408

Yu D, Hang CC (2010) A reflective review of disruptive innovation theory. Int J Manag Rev 12(4):435–452

Zahra SA (1993) A conceptual model of entrepreneurship as firm behavior: a critique and extension. Entrepreneursh Theory Pract 17(4):5–21

Zahra SA (1996) Goverance, ownership, and corporate entrepreneurship: the moderating impact of industry technological opportunities. Acad Manag J 39(6):1713–1735

Zahra SA (2015) Corporate entrepreneurship as knowledge creation and conversion: the role of entrepreneurial hubs. Small Bus Econ 44(4):727–735

Zahra SA, Covin JG (1995) Contextual influences on the corporate entrepreneurship–performance relationship: a longitudinal analysis. J Bus Ventur 10(1):43–58

Zahra SA, Nielsen AP, Bogner WC (1999) Corporate entrepreneurship, knowledge, and competence development. Entrepreneursh Theory Pract 23(3):169–189

Zammuto RF, Griffith TL, Majchrzak A, Dougherty DJ, Faraj S (2007) Information technology and the changing fabric of organization. Org Sci 18(5):749–762

Zeng Q, Chen W, Huang L (2008) E-business transformation: an analysis framework based on critical organizational dimensions. Tsinghua Sci Technol 13(3):408–413

Download references

Acknowledgements

Open Access funding provided by Projekt DEAL.

Author information

Authors and affiliations.

Chair of Innovation, Technology & Entrepreneurship, Zeppelin University, Am Seemooser Horn 20, 88045, Friedrichshafen, Germany

Swen Nadkarni & Reinhard Prügl

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Swen Nadkarni .

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

See Tables  4 , 5 , 6 and 7 and Figs.  5 and 6 .

figure 5

Data structure for the technology-centric dimension of technological disruption

figure 6

Data structure for the technology-centric dimension of corporate entrepreneurship

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Nadkarni, S., Prügl, R. Digital transformation: a review, synthesis and opportunities for future research. Manag Rev Q 71 , 233–341 (2021). https://doi.org/10.1007/s11301-020-00185-7

Download citation

Received : 14 July 2019

Accepted : 28 March 2020

Published : 18 April 2020

Issue Date : April 2021

DOI : https://doi.org/10.1007/s11301-020-00185-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Digital transformation
  • Digital disruption
  • Technological disruption
  • Corporate entrepreneurship
  • Literature review
  • Research agenda

JEL Classification

  • Find a journal
  • Publish with us
  • Track your research

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals

Information technology articles from across Nature Portfolio

Information technology is the design and implementation of computer networks for data processing and communication. This includes designing the hardware for processing information and connecting separate components, and developing software that can efficiently and faultlessly analyse and distribute this data.

Latest Research and Reviews

research paper technology

Prediction of influential nodes in social networks based on local communities and users’ reaction information

  • Rohollah Rashidi
  • Farsad Zamani Boroujeni
  • Hadi Farhadi

research paper technology

Restoring private autism dataset from sanitized database using an optimized key produced from enhanced combined PSO-GWO framework

  • Md. Mokhlesur Rahman
  • Ravie Chandren Muniyandi
  • Md. Moniruzzaman

research paper technology

The ethics of ChatGPT in medicine and healthcare: a systematic review on Large Language Models (LLMs)

  • Joschka Haltaufderheide
  • Robert Ranisch

research paper technology

Reinforcement learning-trained optimisers and Bayesian optimisation for online particle accelerator tuning

  • Holger Schlarb

research paper technology

A rhinopithecus swarm optimization algorithm for complex optimization problem

  • Guoyuan Zhou

research paper technology

Hybrid ant colony-based inter-cluster routing protocol for FANET

Advertisement

News and Comment

research paper technology

Can AI be superhuman? Flaws in top gaming bot cast doubt

Building robust AI systems that always outperform people might be harder than thought, say researchers who studied Go-playing bots.

  • Matthew Hutson

research paper technology

Integrating communication and control for efficient deep space exploration

An article in IEEE Transactions on Wireless Communications presents an approach that integrates control and communication needs to enhance the communication efficiency and reliability in unmanned space exploration.

research paper technology

Misinformation might sway elections — but not in the way that you think

Rampant deepfakes and false news are often blamed for swaying votes. Research suggests it’s hard to change people’s political opinions, but easier to nudge their behaviour.

research paper technology

Behavioral health and generative AI: a perspective on future of therapies and patient care

There have been considerable advancements in artificial intelligence (AI), specifically with generative AI (GAI) models. GAI is a class of algorithms designed to create new data, such as text, images, and audio, that resembles the data on which they have been trained. These models have been recently investigated in medicine, yet the opportunity and utility of GAI in behavioral health are relatively underexplored. In this commentary, we explore the potential uses of GAI in the field of behavioral health, specifically focusing on image generation. We propose the application of GAI for creating personalized and contextually relevant therapeutic interventions and emphasize the need to integrate human feedback into the AI-assisted therapeutics and decision-making process. We report the use of GAI with a case study of behavioral therapy on emotional recognition and management with a three-step process. We illustrate image generation-specific GAI to recognize, express, and manage emotions, featuring personalized content and interactive experiences. Furthermore, we highlighted limitations, challenges, and considerations, including the elements of human emotions, the need for human-AI collaboration, transparency and accountability, potential bias, security, privacy and ethical issues, and operational considerations. Our commentary serves as a guide for practitioners and developers to envision the future of behavioral therapies and consider the benefits and limitations of GAI in improving behavioral health practices and patient outcomes.

  • Emre Sezgin

research paper technology

Rate-splitting multiple-access-enabled V2X communications

An article in IEEE Transactions on Wireless Communications proposes solutions for interference management in vehicle-to-everything communication systems by leveraging a one-layer rate-splitting multiple-access scheme.

research paper technology

The dream of electronic newspapers becomes a reality — in 1974

Efforts to develop an electronic newspaper providing information at the touch of a button took a step forward 50 years ago, and airborne bacteria in the London Underground come under scrutiny, in the weekly dip into Nature ’s archive.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

research paper technology

Impact of modern technology in education

  • Journal of Applied and Advanced Research 3(S1):33
  • CC BY-NC 4.0
  • This person is not on ResearchGate, or hasn't claimed this research yet.

Discover the world's research

  • 25+ million members
  • 160+ million publication pages
  • 2.3+ billion citations

Keo Vireak

  • Bunrosy Lan
  • Assyifa Ilma Maharani

Nanang Winarno

  • E. Eliyawati

Nur Jahan Ahmad

  • Ajeng Zanna Tirahna
  • Sriadhi Sriadhi
  • Muhammad Nadeem

Asim Rafiq

  • Renjith George

Preethy Mary Donald

  • Sangeetha Periyasamy
  • Yulia Nofriza
  • Zelhendri Zen
  • Rida Rasmini
  • Suhairee Berngacha
  • Malia Sekokotoana
  • Dhimas Wahyu Pradana

Ofianto Ofianto

  • Fini Fajri Mulyani

Alim Mustafaevich Asanov

  • J.D. Bransford
  • R. R. Cocking
  • BRIT J EDUC TECHNOL

Jennifer M. Brill

  • Chad Galloway
  • FUTURE CHILD
  • J Roschelle
  • H Wenglinski
  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up

Impossible? Let’s see.

Whether we're shaping the future of sustainability, or optimizing algorithms, or even exploring epidemiological studies, Google Research strives to continuously progress science, advance society, and improve the lives of billions of people.

Person looking up at screen

Advancing the state of the art

Our teams advance the state of the art through research, systems engineering, and collaboration across Google. We publish hundreds of research papers each year across a wide range of domains, sharing our latest developments in order to collaboratively progress computing and science.

Learn more about our philosophy.

Watch the film

Link to Youtube Video

Read the latest

CVPR2024

JUNE 17 - 21 · CONFERENCES & EVENTS

PHLLM1-HeroOverview

JUNE 11 · BLOG

JUNE 5 · BLOG

HighSeas-1-Shipping

JUNE 4 · BLOG

CodecLM1-Hero

MAY 30 · BLOG

ChatDirector_hero

Our research drives real-world change

MedPalm2

Improving our LLM designed for the medical domain

  • Large language models encode clinical knowledge Publication
  • Towards Expert-Level Medical Question Answering with Large Language Models Publication
  • Our latest health AI research updates Article
  • Med-PaLM 2, our expert-level medical LLM Video

Project Contrails

Project Contrails

A cost-effective and scalable way AI is helping to mitigate aviation’s climate impact

  • A human-labeled Landsat-8 contrails dataset Dataset
  • Can Google AI make flying more sustainable? Video
  • Estimates of broadband upwelling irradiance fromm GOES-16 ABI Publication
  • How AI is helping airlines mitigate the climate impact of contrails Blog

See our impact across other projects

open building

Open Buildings

Project Relate

Project Relate

Flood Forcasting

Flood Forecasting

We work across domains

Our vast breadth of work covers AI/ML foundations, responsible human-centric technology, science & societal impact, computing paradigms, and algorithms & optimization. Our research teams impact technology used by people all over the world.

One research paper started it all

The research we do today becomes the Google of the future. Google itself began with a research paper, published in 1998, and was the foundation of Google Search. Our ongoing research over the past 25 years has transformed not only the company, but how people are able to interact with the world and its information.

Legacy

Responsible research is at the heart of what we do

The impact we create from our research has the potential to reach billions of people. That's why everything we do is guided by methodology that is grounded in responsible practices and thorough consideration.

responsible-ai

Help us shape the future

Academic community

We've been working alongside the academic research community since day one. Explore the ways that we collaborate and provide resources and support through a variety of student and faculty programs.

Career Opportunities

From Accra to Zürich, to our home base in Mountain View, we’re looking for talented scientists, engineers, interns, and more to join our teams not only at Google Research but all research projects across Google.

Explore our other teams and product areas

Google Cloud

Google DeepMind

LABS.GOOGLE

Technology Research Topics

image

Table of contents

  • 1 What are Technology Research Topics?
  • 2 Tips for Writing Technology Research Papers
  • 3 Computer Science and Engineering Technology Research Topics
  • 4 Energy and Power Technology Research Topics
  • 5 Medical Devices & Diagnostics
  • 6 Pharmaceutical Technology Research Topics
  • 7 Food Technology Research Topic
  • 8 Educational Technology Research Topic
  • 9 Controversial Technology Research Topics
  • 10 Transportation Technology Research Topics
  • 11.1 Conclusion

Have you ever wondered what interesting technology topics for research papers mean? Then this article will provide you with the answer and topic examples that you can research and write on.

Have you ever wondered what interesting technology topics for research paper mean? Then this article will provide you with the answer and topic examples that you can research and write on.

Tech-related topics are among the vastest categories for college students, experts, and researchers. The field covers everything development majorly. The good thing about technology is that it cuts across every business sector and education field. It is important in Sciences, Socials and Fine Arts.

There have been many technology research topics about technology and development of sciences in the 21st century. This is due to the massive scope of this field. Researchers and thesis students have continued to research the foundation of every development. Triggering new findings that contribute to the overall improvement of the field. There have been many thesis papers on technologies, and there will still be more over the years. This is because the field has witnessed the highest and fastest growth among other disciplines and sciences.

This article seeks to take the research of technology and its concepts to a higher level. By considering very recent topics in line with the evolution and revolution of the field. The topics suggested in this article are divided into various categories to give readers a very good understanding of the latest technological concepts.

What are Technology Research Topics?

A technology research topic is a research or thesis title that gives a researcher or expert an idea of what to work on. While in certain instances, people who make technology research will have their topic scribbled out for them, most of the time, they will need to get a topic themselves. These topics make it easy for them to work on.

Generally, a topic based on the technological field will be very formal. It must contain researched data and facts. The topic must have a final aim of projecting a solution, answer, or knowledge to the targeted audience. With this being the case, getting a technology research title requires more than just picking any topic. What will pass on as the best topic for research title will be one that can be researched and provides a solution to a problem that the target audience needs. In certain instances, both the problem and the solution may be completely new to the target audience.

However, the ability of the writer to make their target audience know that there is a problem and a corresponding solution could do the thesis and project a pathway to ground-breaking research. Hence, a research title must open the researcher, thesis student, and expert to opportunities that could trigger landmark solutions.

Based on the importance of a research title to an entire technology thesis or research, a potential writer must ensure that they know what it takes to draft an excellent technology and scientific research paper title. The good thing is that tips are available to draft an excellent thesis topic.

Tips for Writing Technology Research Papers

There are very important steps that must be followed for a writer to make an excellent thesis topic. One major tip is that any topic selected must include at least one recent technology. A thesis topic that needs today’s basic technology as a roadmap has a higher probability of coming out much more successfully than one that does not include any current or new technology. It is also possible to buy a research paper based on technology to avoid all the processes of learning new technology concepts. Below are the top tips for writing excellent technology Research projects.

  • Understand The Research Assignment This step is very important and will determine whether you need to purchase a research paper or not. You have to understand the assignment to be asked to research if you seek to give out great quality work. You need to ensure that you know the problem being projected to you and what is needed as a solution. The best research paper topics technology are those the writers fully understood and created.
  • Get the Topic Idea You can only carve out a topic for an assignment that you understand. This is why the first step is imperative and why this one must follow. Understanding the topic that currently and comprehensively covers the assignment and its solution will help you develop a catching title. Even if you seek to purchase research papers for sale , you will need to fully understand the assignment and the relevant fitting topic before purchasing. You will get value for your money and wow your target audience.
  • Choose a Scope to Research If you are writing your research yourself, you should know that getting a topic is not just enough. A topic may cut into very vast areas, and it would be impossible for you to research all of these areas before your submission deadline. So the best way to ensure that you give quality research assignments is by specifying the scope of your topic. Identify which questions you want to provide answers for and focus on them. That way, your effort will be concentrated with a better output.
  • Get Good Links Knowing how to get great links for your work is very important as that will help you give out excellent work. Relying on established sources for important theories will help you establish a more convincing solution to the problem your research is about.

This article will consider major research topics on different technology research topics so that researchers and students planning to write a thesis or research paper can select from them and start their project immediately.

Computer Science and Engineering Technology Research Topics

Computer Science is one of the widest fields of Technology projects. As such, there are multiple writing topics to explore following the consistent and continuous development of the sector. As for Computer Science, there are many research works on computer engineering and more to explore. Thanks to the growth in better computer hardware and the more seamless management systems developed over time.

This section consists of 15 different research topics that thesis and college students can work on and get approval from their supervisors.

All the topics are recent and in line with global needs in 2023 and the next couple of years. They include:

  • Blockchain technology and the banking industry
  • The connection between human perception and virtual reality
  • Computer-assisted education and the future
  • High-dimensional data modeling and computer science
  • Parallel computing Languages
  • Imperative and declarative language in computer science
  • The machine architecture and the efficiency of code
  • The use of mesh generation for computational domains
  • Persistent data structure optimization
  • System programming language development
  • Cyber-physical system vs sensor network
  • Network economics and game theory
  • Computational thinking and science
  • Types of software security
  • Programming language and floating-point

more_shortcode

Energy and Power Technology Research Topics

Unlike many technology-related topics, Energy and Power is one that cuts into the spheres of politics, economics, and pure science. In the areas of Economics, Energy and Power are the second most arbitrated cases. It’s only behind Construction disputes.

However, energy and Power in Science and Practicality are not for the sake of disputes. In recent years, there has been more harmony between energy and other tech-related disciplines. This has triggered many research projects, and writing research assignments is not out of the equation.

So do you have an energy/Power research assignment to handle, then this section provides you with amazing topic ideas and scopes that you can choose and pick from? All the topics are very recent and in line with the needs of today’s assignments.

Get topics that focus on Cars, power industries, chemicals, and more.

  • The use of fuel cells for stationary power generation
  • Energy density
  • Lithium-air and lithium-ion battery
  • The better between gasoline and lithium-air batteries
  • Renewable energy technologies
  • The pros and cons of renewable energy usage
  • Algae and biofuels
  • Solar installations of India
  • The use of robots in adjusting solar panels to weather
  • Create energy and inertial confinement fusion
  • Hydrogen energy and the future
  • Alternative energy sources amidst gas price increase
  • The application of energy transformation methods in respect to hydrogen energy
  • AC systems and thermal storage
  • Loading balance using smart grid

Medical Devices & Diagnostics

Medical devices and diagnostics are fast-growing fields with many opportunities for researchers to explore. There are thousands of devices that aid doctors in treating and managing patients. However, it cannot be emphatically stated that all of these devices offer the best results, where research assignments come into play.

As medical devices, medical diagnoses are also A very concentrated research area. Diagnostic research is highly related to medical devices because diagnoses are carried out with modern gadgets being produced by experts.

This section will consider top medical devices and diagnoses research titles in line with recent needs.

  • Difference between Medical Devices and Drugs
  • How Diagnostics helps treatment in 2023
  • The Era of genetics Diagnostics and Discovery of Hidden Vulnerabilities
  • How are Medical Smart Carts changing the game of Medicine?
  • The Eventuality of AI in Smart Medical Devices
  • The Regulation of Medical Devices
  • Should Private Diagnoses Be Used for Making Critical Medical Decisions?
  • Diagnostic Devices, Genetic Tests, and In Vitro Devices
  • 3D & 4D Printing in Biomedicine
  • Innovation in Minimally Invasive Therapies, Screening and Biosensing: Complex Networks, Data-driven Models
  • Are medical Devices turning the Health Sector into a small interconnected powerhouse?
  • Advances in Methods of Diagnostic & Therapeutic Devices
  • What are Intra-Body Communication & Sensing?
  • Smart Gadgets Data Collection in terms of Neuroscience
  • The Contribution of Smartphone-Enabled Point-of-Care Diagnostic & Communication Systems

more_shortcode

Pharmaceutical Technology Research Topics

Medicine has continued to improve, with technology in this area spiking in the last 20 years than it did centuries before. Pharmaceutical technology is one of the major flag bearers of this growth. As the COVID-19 pandemic revealed, the potential of pharmaceutical technology knows no bounds as long as there is continuous research in the field.

With that being the case, there are multiple research titles and projects available to take on in this field, with the opportunity almost endless. This section lists some of these topics to help research students get great topics that they can work on for the best effect. While they are only 15, they all cover a large scope of inexhaustible topics, leaving the researcher to make their choice.

  • The technologies of pharmaceuticals and their specialty medications
  • The technology and trend of prior electronic authorization in pharmacy
  • Medication therapy management and its effectiveness
  • Electronic prescription of a controlled substance as regards the issues of drug abuse
  • Health information exchange and medication therapy management
  • How efficient and effective is a drug prescription monitoring program?
  • The script standard of NCPDP for specialty pharmacies
  • The patient’s interest in real-time pharmacy
  • AIDS: development of drugs and vaccines
  • Pharmaceutical technologies and data security
  • The DNA library technology: an overview
  • The impact of cloud ERP in the pharmaceutical industry
  • Cannabidiol medication in pain management and the future
  • Pharmaceutical research with phenotypic screening
  • The benefits of cloud technology for small pharmaceutical companies

Food Technology Research Topic

Food research assignments and thesis have been going on for decades and even centuries due to their importance to living organisms. In 2023, this trend is expected to continue with more research topics to explore. Here are some amazing topic ideas that you can choose from and offer a mind-blowing research assignment.

  • The types of machines used in the food industry
  • 3D printing and the food industry
  • Micro packaging and the future
  • The impacts of robots as regards safety in butchery
  • Swallowing disorder: 3D printed food as a solution
  • Food technology and food waste: what are the solutions
  • Biofilms and cold plasma
  • Drones and precision agriculture
  • Food industry and the time-temperature indicators
  • Preservatives, additives, and the human gut microbiome
  • Hydroponic and conventional farming
  • The elimination of byproducts in edible oil production
  • The baking industry and the newest technology
  • Electronic nose in agriculture and food industry
  • Food safety

Educational Technology Research Topic

As far as college students are concerned, technology in education and its subsequent research is the biggest assignment and thesis they have to consider. Education technology has continued to grow, with many gadgets and smart equipment introduced to facilitate better learning.

This section will consider some of the major education research titles that technology students can pick and provide excellent research.

  • How is computational thinking improving critical thinking among students
  • The effect of professional learning for college student
  • The impact of technology in educational research
  • The relevance of technology in advancing scientific research
  • Virtual reality and its role in helping student understand complex concepts
  • Global learning through technology and how it affects education standards
  • Data centers and their role in education
  • Cultural competence and socio-emotional learning
  • Artificial intelligence and educational system
  • Is the development of sufficient national capacities related to science, technology, and innovation possible?
  • How inclusive is the architecture of learning systems?
  • Student-centered learning
  • The impact of connectivity for schools and learning, especially in rural environments
  • Energy sources: their technological relativity and use in education
  • Community college: advantages and disadvantages

Controversial Technology Research Topics

As the name suggests, Controversial technology topics are among the most researched in science. How good is technology considering its effects on the global world and nature? This argument is the foundation of Controversial technology topics. See 15 different technology topics to choose from as you start your research assignment.

  • Can Human Trials Improve Drugs and Medicines Faster?
  • The Legality of Euthanasia and Assisted Killings in Medicine
  • Why Kids should not be exposed to the Internet and Social Media Gadgets in Their Earlier Years
  • How Is Technology Destroying the World’s Ecology?
  • Is Technology Leading the Destruction of the World’s Climate?
  • How Has Technology Increased Radiation and the Depletion of the World?
  • Does Technology Increase Gang Initiation due to Internet Access?
  • How Social Media Increases the Rate of Children and Young Adults Death?
  • The Relationship Between Technology and Depression
  • Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR): Editing the Human Genome
  • The Possible Devastation of World from High-Tech Military Weapons
  • Space Colonization: How it is Good and Bad for Mother Earth
  • Are Law Enforcement use of Hidden Cameras an Encroachment of Privacy?
  • How Virtual Reality Can Become the New Reality If Developed?
  • The Wins of Cochlear Implant Research

Transportation Technology Research Topics

Transportation technology research titles are among the hottest categories for students currently. See 15 best research topics for tech and science-related research to pick from.

  • Are Computerized self-driving Cars Safe?
  • The development and Advantages of hybrid cars and Electric cars
  • How to Protect your smart car from hijackers and Car Thieves?
  • Will the next-generation Cars Have Reliable GPS devices and Replace Drivers?
  • The Evolution of High-speed rail networks and How They Change Rail Transport
  • Driving and Using Cell phones: The Global Stats of Cell Phone Related Auto Accidents
  • Is Teleportation an Impossible Physics?
  • Will Gyroscopes be the new convenient solutions for public transportation?
  • Will Logistics Companies be More Efficient With Electric Trucks?
  • How Carbon fiber Serves as an optional material for unit load devices
  • The Benefits of Advanced Transport Management Systems (TMS)?
  • Can Solar Roadways Become More Cost-Effective?
  • Does Technology Provide the Possibility of Water Powered Cars?
  • How AI has Penetrated the Transport System and Make It More Effective
  • Speed and Safety: How Technology Has Revolutionized Transport Systems

Information Communication Technologies (ITC) Research Topics

ICT is arguably the biggest field of technology, thanks to the amazing developments that have been achieved over the years in the field. ICT plays a major role in different areas of human life. This includes the area of TELECOMs, Education, Family, and Industries.

This section will consider 15 major technology titles on ICT to help students get topics to work on.

  • How is technology improving Humans reading ability?
  • Do online formats of readable information encourage readers to skim through instead of Understanding the Topics?
  • How has technology made it extremely easy to get information in Seconds: a good or bad development?
  • The Misconception of Gauging Intelligence?
  • How are Internet Search Engines changing us?
  • The introduction of ICT and new technologies in Education and How they improve Students’ learning
  • Is it worrisome that schools and Colleges now educate students via iPads, social media, Smart Boards, and other new Applications?
  • Did the Digital Age trigger any loss of information and Unique Intelligence that conventional and Traditional Learning and research methods provided in the Old era?
  • Do Search Engines and Web2 Platforms censor information, leave users blindsided, and Keep them in the Dark?
  • Should Encyclopedia sites such as Wikipedia be Regulated because of the High Risk of it Providing Wrong Information to the Public?
  • Are Blogs and Online Websites Better than Books?
  • The Importance of Traditional Researching and learning in a Highly Digital World
  • Do PDFs and Other Electronic Books Promote Short Attention Span?
  • Are Tech-Savvy generations dumber or Smarter?
  • Should Schools Become Fully Digitalized?

This article shows that technology research papers require a good understanding of technological and scientific concepts. That way, people can easily understand the basis of an assignment. They know how to draft the topic and scope. They also get excellent resources for completing the projects.

This article explained what technological research papers are. It explained how to write them and listed many topic examples people can use for their projects. Therefore, if you follow all the information discussed in this article, you will get top technology ideas for research.

Readers also enjoyed

Food Research Topics

WHY WAIT? PLACE AN ORDER RIGHT NOW!

Just fill out the form, press the button, and have no worries!

We use cookies to give you the best experience possible. By continuing we’ll assume you board with our cookie policy.

research paper technology

IEEE Account

  • Change Username/Password
  • Update Address

Purchase Details

  • Payment Options
  • Order History
  • View Purchased Documents

Profile Information

  • Communications Preferences
  • Profession and Education
  • Technical Interests
  • US & Canada: +1 800 678 4333
  • Worldwide: +1 732 981 0060
  • Contact & Support
  • About IEEE Xplore
  • Accessibility
  • Terms of Use
  • Nondiscrimination Policy
  • Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2024 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

Illustration

  • Research Paper Guides
  • Research Paper Topics
  • 450+ Technology Research Topics & Ideas for Your Paper
  • Speech Topics
  • Basics of Essay Writing
  • Essay Topics
  • Other Essays
  • Main Academic Essays
  • Basics of Research Paper Writing
  • Miscellaneous
  • Chicago/ Turabian
  • Data & Statistics
  • Methodology
  • Admission Writing Tips
  • Admission Advice
  • Other Guides
  • Student Life
  • Studying Tips
  • Understanding Plagiarism
  • Academic Writing Tips
  • Basics of Dissertation & Thesis Writing

Illustration

  • Essay Guides
  • Formatting Guides
  • Basics of Research Process
  • Admission Guides
  • Dissertation & Thesis Guides

450+ Technology Research Topics & Ideas for Your Paper

Technology Research Topics

Table of contents

Illustration

Use our free Readability checker

Technology is like a massive puzzle where each piece connects to form the big picture of our modern lives. Be it a classroom, office, or a hospital, technology has drastically changed the way we communicate and do business. But to truly understand its role, we need to explore different technology research topics.

And that's where this blog will be handy! Powered by solid experience, our professional term paper writers gathered multiple technology research paper topics in literally any direction. Whether you're a student looking for an intriguing subject for your project or just a tech enthusiast trying to broaden your understanding, we've got your back. Dive into this collection of tech topics and see how technological progress is shaping our world.

What Are Technology Topics?

Technology is the application of scientific knowledge for practical purposes. It's the smartphone in your hand, the electric car on your street, and the spacecraft exploring Mars. It might also be the code that protects your online privacy and the microscope that uncovers mysteries of the human cell.

Technology permeates our lives, revolutionizing the way we communicate, learn, work, and play. But, beyond the gadgets and gizmos, there's a world of diverse technology research topics, ideas, concepts, and challenges.

Technology topics zoom in on these ideas, peeling back the layers of the tech universe. As a researcher, you might study how AI is changing healthcare, explore the ethical implications of robotics, or investigate the latest innovations in renewable energy. Your project should probe into the 'how,' the 'why,' and the 'what next' of the technology that is reshaping our world. So, whether you're dissecting the impact of EdTech on traditional learning or predicting the future of space exploration, research topics in technology are limitless.

Branches of Technology Research Paper Topics

Undoubtedly, the reach of technology is extensive. It's woven its way into almost every corner of our lives. Before we move to technological research topics, let’s first see just where technology has left its mark. So, here are some areas where technology is really shaking things up:

  • Government services: E-governance, digital IDs, and digital voting are just a few examples of technology's application in government services.
  • Finance: Fintech innovations include cryptocurrencies, mobile banking, robo-advising, and contactless payments.
  • Education: Technology is used in a wide variety of educational contexts, from e-learning platforms and digital textbooks to educational games and virtual classrooms.
  • Communication: Social media, video conferencing, instant messaging, and email are all examples of tech's role in communication.
  • Healthcare: From electronic medical records and telemedicine to advanced imaging technology and robotic surgery, technology is surely transforming healthcare.
  • Agriculture: Technological advancements are revolutionizing agriculture through precision farming, automated machinery, drones, and genetic engineering.
  • Retail: It also influences retail through e-commerce, mobile payments, virtual fitting rooms, and personalized shopping experiences.
  • Environment: Tech is used in climate modeling, conservation efforts, renewable energy, and pollution control.

These are far from all sectors where technology can be applied. But this list shows how diverse topics in technology can be.

How to Choose a Technology Research Topic?

Before you select any idea, it’s important to understand what a good technology research topic is. In a nutshell, a decent topic should be interesting, relevant, and feasible to research within your available resources and time. Make sure it’s specific enough, but not to narrow so you can find enough credible resources. 

Your technology topic sets the course of your research. It influences the type and amount of information you'll search for, the methods you'll use to find it, and the way you'll interpret it. Ultimately, the right topic can make your research process not only more manageable but also more meaningful. But how to get started, you may ask. Don’t worry! Below we are going to share valuable tips from our thesis writers on how to choose a worthy topic about technology.

  • Make research Study the latest trends and explore relevant technology news. Your task is to come up with something unique that’s not been done before. Try to look for inspiration in existing literature, scientific articles, or in past projects.
  • Recognize your interests Start with what you are genuinely curious about in the field of technology. Passion can be a great motivator during the research process.
  • Consider the scope You want a topic that is neither too broad nor too narrow. It should provide enough material to explore without being overwhelming.
  • Check availability of resources Ensure there are sufficient trustworthy resources available for your chosen topic.
  • Evaluate the relevance Your technology research idea should be pertinent to your field of study and resonate with current trends. This can make your research more valuable and engaging for your audience.

Top List of Technology Research Topics

Are you looking for the best research topics about technology? Stop by! Here, we’ve carefully collected the topic ideas to ignite your curiosity and support your research. Each topic offers various data sources, allowing you to construct well-supported arguments. So, let's discover these fascinating subjects together!

  • AI's influence on healthcare.
  • Challenges of cybersecurity in a connected world.
  • Role of drones in modern agriculture.
  • Could renewable energy replace fossil fuels?
  • Impact of virtual reality on education.
  • Blockchain's potential beyond cryptocurrencies.
  • Ethical considerations in biotechnology.
  • Can smart cities enhance quality of life?
  • Autonomous vehicles – opportunities and threats.
  • Robotics in manufacturing.
  • Is big data changing decision-making processes?
  • E-waste : Challenges and solutions.
  • Role of IoT in smart homes.
  • Implications of 5G technology.
  • EdTech: A revolution in learning?

Good Technology Research Topics

Ready for another batch of inspiration? Get ready to discover great technology topics for a research paper across various disciplines. These ideas are designed to stimulate your creativity and provide substantial information for your research. So, let's explore these exciting themes together!

  • Impact of nanotechnology on medicine.
  • Harnessing quantum computing potential.
  • Augmented reality in tourism.
  • Can bioinformatics revolutionize disease prediction?
  • Sustainability in tech product design.
  • Darknet : A hidden side of the internet.
  • How does technology influence human behavior?
  • Assistive technology in special education.
  • Are smart textiles transforming the fashion industry?
  • Role of GIS in urban planning.
  • Space tourism: A reality or fantasy?
  • Potential of digital twins in engineering.
  • How is telemedicine shaping healthcare delivery?
  • Green IT : Addressing environmental issues.
  • Impact of machine learning on finance.

Interesting Technology Research Paper Topics

For those craving intriguing angles and fresh ideas, we present these interesting topics in technology. This collection is filled with thought-provoking subjects that cover the lesser-known areas of technology. Each topic is concise, clear, and ready to spark a fascinating research journey!

  • Cyber-physical systems in industry 4.0.
  • Social implications of deepfake technology.
  • Can gamification enhance learning outcomes?
  • Neuromorphic computing: Emulating the human brain.
  • Li-Fi : Light-based communication technology.
  • Health risks of prolonged screen time.
  • Quantum cryptography and secure communication.
  • Role of technology in sustainable agriculture.
  • Can we predict earthquakes with AI?
  • Virtual influencers: A new trend in marketing.
  • Tech solutions for wildlife conservation.
  • Role of 3D printing in organ transplantation.
  • Impact of automation on the job market.
  • Cloud gaming: A new era in the gaming industry.
  • Genomic editing: Possibilities and ethical concerns.

New Technology Research Topics

Understanding the fast-paced world of technology requires us to keep up with the latest developments. Hence, we bring you burning  technology research paper topics. These ideas reflect the most recent trends and advances in technology, offering fresh perspectives for your research. Let's take a look at these compelling subjects!

  • Potential of hyper automation in business processes.
  • How is AI changing digital marketing?
  • Brain-computer interfaces: The future of communication?
  • Quantum supremacy : Fact or fiction?
  • 5D data storage: Revolutionizing data preservation.
  • Rise of voice technology in consumer applications.
  • Using AI for mental health treatment.
  • Implications of edge computing for IoT devices.
  • Personalized learning with AI in education.
  • Role of technology in reducing food waste.
  • Digital twin technology in urban development.
  • Impact of AI on patent law.
  • Cybersecurity in the era of quantum computing.
  • Role of VR in disaster management training.
  • AI in talent recruitment: Pros and cons.

Unique Technology Research Topics

For those wanting to stand out with truly original research, we offer 100% authentic topics about technology. We understand that professors highly value unique perspectives. Below we've meticulously selected these technology paper topics to offer you something different. These are not your everyday technology subjects but rather unexpected gems ready to be explored.

  • Digital ethics in AI application.
  • Role of technology in countering climate change.
  • Is there a digital divide in developing countries?
  • Role of drones in disaster management.
  • Quantum internet: Possibilities and challenges.
  • Digital forensic techniques in cybersecurity.
  • Impact of technology on traditional art forms.
  • Biohacking: Can we really upgrade ourselves?
  • Technology and privacy: An inevitable trade-off?
  • Developing empathy through virtual reality.
  • AI and creativity: Can machines be artists?
  • Technology's impact on urban gardening.
  • Role of technology in accessible tourism.
  • Quantum biology: A frontier of science.
  • Unmanned underwater vehicles: Opportunities and threats.

Informative Research Topics in Technology

If you are seeking comprehensive information on technologies, this selection will definitely provide you with insights. As you may know, every study should be backed up by credible sources. Technology topics for research papers below are very easy to investigate, so you will surely find a bunch of academic resources.

  • Exploring  adaptive learning systems in online education.
  • Role of technology in modern archaeology.
  • Impact of immersive technology on journalism.
  • The rise of telehealth services.
  • Green data centers: A sustainable solution?
  • Cybersecurity in mobile banking.
  • 3D bioprinting : A revolution in healthcare?
  • How technology affects sleep quality.
  • AI in music production: A new era?
  • Technology's role in preserving endangered languages.
  • Smart grids for sustainable energy use.
  • The future of privacy in a digital world.
  • Can technology enhance sports performance?
  • Role of AR in interior design.
  • How technology is transforming public libraries.

Controversial Research Topics on Technology

Technological field touches upon areas where technology, ethics, and society intersect and often disagree. This has sparked debates and, sometimes, conspiracy theories, primarily because of the profound implications technologies have for our future. Take a look at these ideas, if you are up to a more controversial research topic about technology:

  • Facial recognition technology: Invasion of privacy?
  • Tech addiction: Myth or reality?
  • The ethics of AI in warfare.
  • Should social media platforms censor content?
  • Are cryptocurrencies a boon or a bane?
  • Is technology causing more harm than good to our health?
  • The bias in machine learning algorithms.
  • Genetic engineering: Playing God or advancing science?
  • Will AI replace human jobs?
  • Net neutrality: Freedom of internet or control?
  • The risk of AI superintelligence.
  • Tech companies' monopoly: Beneficial or detrimental?
  • Are we heading towards a surveillance society?
  • AI in law enforcement: Safeguard or threat?
  • Do we rely too much on technology?

Easy Technology Research Paper Topics

Who ever thought the tech field was only for the tech-savvy? Well, it's time to dispel that myth. Here in our collection of simple technology research topics, we've curated subjects that break down complex tech concepts into manageable chunks. We believe that every student should get a chance to run a tech related project without any hurdles.

  • Impact of social media on interpersonal communication.
  • Smartphones: A boon or a bane?
  • How technology improves accessibility for people with disabilities.
  • E-learning versus traditional learning.
  • Impact of technology on travel and tourism.
  • Pros and cons of online shopping.
  • How has technology changed entertainment?
  • Technology's role in boosting productivity at work.
  • Online safety: How to protect ourselves?
  • Importance of digital literacy in today's world.
  • How has technology influenced the music industry?
  • E-books vs printed books: A tech revolution?
  • Does technology promote loneliness?
  • Role of technology in shaping modern communication.
  • The impact of gaming on cognitive abilities.

Technology Research Topics Ideas for Students

As an experienced paper writing service online that helps students all the time, we understand that every learner has unique academic needs. With this in mind, the next section of our blog is designed to cater specifically to different academic levels. Whether you're a high school student just starting to explore technology or a doctoral candidate delving deep into a specialized topic, we've got different technology topics arranged by complexity.

Technology Research Topics for High School Students

High school students are expected to navigate complex topics, fostering critical thinking and promoting in-depth exploration. The proposed research paper topics on technology will help students understand how tech advancements shape various sectors of society and influence human life.

  • How have smartphones changed our communication?
  • Does virtual reality in museums enhance visitor experience?
  • Understanding privacy issues in social media.
  • How has technology changed the way we listen to music?
  • Role of technology in promoting fitness and healthy lifestyle.
  • Advantages and disadvantages of online learning.
  • Does excessive screen time affect sleep quality?
  • Do video games affect academic performance?
  • How do GPS systems work?
  • How has technology improved animation in films?
  • Pros and cons of using smart home devices.
  • Are self-driving cars safe?
  • Technology's role in modernizing local libraries.
  • Can technology help us lead more sustainable lifestyles?
  • Can technology help improve road safety for teenagers?

Technology Research Topics for College Students

Think technology research topics for college are all about rocket science? Think again! Our compilation of college-level tech research topics brings you a bunch of intriguing, conversation-stirring, and head-scratching questions. They're designed to let you sink into the world of technology while also pushing your academic boundaries. Time to dive in, explore, question, and take your own unique stance on hot-button issues.

  • Biometrics in identity verification: A privacy risk?
  • Impact of 5G on mobile gaming.
  • Are wearable fitness devices a true reflection of health?
  • Can machine learning help predict climate change effects?
  • Are digital currencies disrupting traditional finance?
  • Use of drones in search and rescue operations.
  • Impact of e-learning on academic performance.
  • Does artificial intelligence have a place in home security?
  • What are the ethical issues surrounding robotic surgery?
  • Are e-wallets a safer option for online transactions?
  • How has technology transformed news dissemination?
  • AI in language translation: How accurate can it be?
  • Personalized advertising: Boon or bane for online users?
  • Are smart classes making learning more interactive?
  • Influence of technology on homemade crafts and DIY culture.

Technology Research Topics for University Students

Are you browsing for university technology research ideas? We've got you covered. Whether you're about to dig deep into high-tech debates, or just taking your first steps, our list of technology research questions is your treasure chest.

  • Blockchain applications in ensuring academic integrity.
  • Impact of quantum computing on data security.
  • Are brain-computer interfaces a future communication tool?
  • Does digital currency pose a threat to the global economy?
  • Use of AI in predicting and managing natural disasters.
  • Can biometrics replace traditional identification systems?
  • Role of nanotechnology in waste management.
  • Machine learning's influence on climate change modeling.
  • Edge computing: Revolutionizing data processing?
  • Is virtual reality in psychological therapy a viable option?
  • Potential of synthetic biology in medical research.
  • Quantum cryptography: An uncrackable code?
  • Is space tourism achievable with current technology?
  • Ethical implications of gene editing technologies.
  • Artificial intelligence in governance.

Technology Research Paper Topics in Different Areas

In the next section, we've arranged a collection of technology research questions related to different areas like computer science, biotechnology, and medicine. Find an area you are interested in and look through subject-focused ideas and topics for a research paper on technology.

Technology Research Topics on Computer Science

Computer science is a field that has rapidly developed over the past decades. It deals with questions of technology's influence on society, as well as applications of cutting-edge technologies in various industries and sectors. Here are some computer science research topics on technology to get started:

  • Prospects of machine learning in malware detection.
  • Influence of cloud computing on business operations.
  • Quantum computing: potential impacts on cryptography.
  • Role of big data in personalized marketing.
  • Can AI models effectively simulate human decision-making?
  • Future of mobile applications: Towards augmented reality?
  • Pros and cons of open source software development.
  • Role of computer science in advancing virtual reality.
  • Natural language processing: Transforming human-computer interaction?
  • Developing secure e-commerce platforms: Challenges and solutions.
  • Green computing : solutions for reducing energy consumption.
  • Data mining in healthcare: An untapped opportunity?
  • Understanding cyber threats in the internet of things.
  • Algorithmic bias: Implications for automated decision-making.
  • Role of neural networks in image recognition.

Information Technology Research Topics

Information technology is a dynamic field that involves the use of computers and software to manage and process information. It's crucial in today's digital era, influencing a range of industries from healthcare to entertainment. Here are some captivating information technology related topics:

  • Impact of cloud technology on data management.
  • Role of information technology in disaster management.
  • Can artificial intelligence help improve data accuracy?
  • Cybersecurity measures for protecting personal information.
  • Evolving role of IT in healthcare administration.
  • Adaptive learning systems: A revolution in education?
  • E-governance : Impact on public administration.
  • Role of IT in modern supply chain management.
  • Bioinformatics and its role in personalized medicine.
  • Is data mining an invasion of privacy?
  • Can virtual reality enhance training and development programs?
  • Role of IT in facilitating remote work.
  • Smart devices and data security: A potential risk?
  • Harnessing IT for sustainable business practices.
  • How can big data support decision-making processes?

Technology Research Topics on Artificial Intelligence

Artificial Intelligence, or AI as we fondly call it, is all about creating machines that mimic human intelligence. It's shaping everything from how we drive our cars to how we manage our calendars. Want to understand the mind of a machine? Choose a topic about technology for a research paper from the list below:

  • AI's role in detecting fake news.
  • Chatbots in customer service: Are humans still needed?
  • Algorithmic trading: AI's impact on financial markets.
  • AI in agriculture: a step towards sustainable farming?
  • Facial recognition systems: an AI revolution or privacy threat?
  • Can AI outperform humans in creative tasks?
  • Sentiment analysis in social media: how effective is AI?
  • Siri, Alexa, and the future of AI.
  • AI in autonomous vehicles: safety concern or necessity?
  • How AI algorithms are transforming video games.
  • AI's potential in predicting and mitigating natural disasters.
  • Role of AI in combating cyber threats.
  • Influence of AI on job recruitment and HR processes.
  • Can AI help in advancing climate change research?
  • Can machines make accurate diagnoses?

Technology Research Topics in Cybersecurity Command

Cybersecurity Command focuses on strengthening digital protection. Its goal is to identify vulnerabilities, and outsmart cyber threats. Ready to crack the code of the cybersecurity command? Check out these technology topics for research designed to take you through the tunnels of cyberspace:

  • Cybersecurity strategies for a post-quantum world.
  • Role of AI in identifying cyber threats.
  • Is cybersecurity command in healthcare a matter of life and death?
  • Is there any connection between cryptocurrency and cybercrime?
  • Cyber warfare : The invisible battleground.
  • Mitigating insider threats in cybersecurity command.
  • Future of biometric authentication in cybersecurity.
  • IoT security: command challenges and solutions.
  • Cybersecurity and cloud technology: A secure match?
  • Influence of blockchain on cybersecurity command.
  • Machine learning's role in malware detection.
  • Cybersecurity protocols for mobile devices.
  • Ethics in cybersecurity: Hacking back and other dilemmas.
  • What are some steps to recovery after a breach?
  • Social engineering: Human factor in cybersecurity.

Technology Research Topics on Biotechnology

Biotechnology is an interdisciplinary field that has been gaining a lot of traction in the past few decades. It involves the application of biological principles to understand and solve various problems. The following research topic ideas for technology explore biotechnology's impact on medicine, environment, agriculture, and other sectors:

  • Can GMOs solve global hunger issues?
  • Understanding biotech's role in developing personalized medicine.
  • Using biotech to fight antibiotic resistance.
  • Pros and cons of genetically modified animals.
  • Biofuels – are they really a sustainable energy solution?
  • Ethical challenges in gene editing.
  • Role of biotech in combating climate change.
  • Can biotechnology help conserve biodiversity?
  • Biotech in beauty: Revolutionizing cosmetics.
  • Bioluminescence – a natural wonder or a biotech tool?
  • Applications of microbial biotechnology in waste management.
  • Human organ farming: Possibility or pipe dream?
  • Biotech and its role in sustainable agriculture.
  • Biotech advancements in creating allergy-free foods.
  • Exploring the future of biotech in disease detection.

>> Read more: Biology Topics to Research

Technology Research Paper Topics on Genetic Engineering

Genetic engineering is an area of science that involves the manipulation of genes to change or enhance biological characteristics. This field has raised tremendous ethical debates while offering promising solutions in medicine and agriculture. Here are some captivating topics for a technology research paper on genetic engineering:

  • Future of gene editing: Breakthrough or ethical dilemma?
  • Role of CRISPR technology in combating genetic diseases.
  • Pros and cons of genetically modified crops.
  • Impact of genetic engineering on biodiversity.
  • Can gene therapy provide a cure for cancer?
  • Genetic engineering and the quest for designer babies.
  • Legal aspects of genetic engineering.
  • Use of genetic engineering in organ transplantation.
  • Genetic modifications: Impact on human lifespan.
  • Genetically engineered pets: A step too far?
  • The role of genetic engineering in biofuels production.
  • Ethics of genetic data privacy.
  • Genetic engineering and its impact on world hunger.
  • Genetically modified insects: Solution for disease control?
  • Genetic engineering: A tool for biological warfare?

Reproduction Technology Research Paper Topics

Reproduction technology is all about the science that aids human procreation. It's a field teeming with innovation, from IVF advancements to genetic screening. Yet, it also stirs up ethical debates and thought-provoking technology topics to write about:

  • Advances in in Vitro Fertilization (IVF) technology .
  • The rise of surrogacy: Technological advancements and implications.
  • Ethical considerations in sperm and egg donation.
  • Genetic screening of embryos: A step forward or an ethical minefield?
  • Role of technology in understanding and improving fertility.
  • Artificial Wombs: Progress and prospects.
  • Ethical and legal aspects of posthumous reproduction.
  • Impact of reproductive technology on the LGBTQ+ community.
  • The promise and challenge of stem cells in reproduction.
  • Technology's role in preventing genetic diseases in unborn babies.
  • Social implications of childbearing technology.
  • The concept of 'designer babies': Ethical issues and future possibilities.
  • Reproductive cloning: Prospects and controversies.
  • Technology and the future of contraception.
  • Role of AI in predicting successful IVF treatment.

Medical Technology Topics for a Research Paper

The healthcare field is undergoing massive transformations thanks to cutting-edge medical technology. From revolutionary diagnostic tools to life-saving treatments, technology is reshaping medicine as we know it. To aid your exploration of this dynamic field, we've compiled medical technology research paper topics:

  • Role of AI in early disease detection.
  • Impact of telemedicine on rural healthcare.
  • Nanotechnology in cancer treatment: Prospects and challenges.
  • Can wearable technology improve patient outcomes?
  • Ethical considerations in genome sequencing.
  • Augmented reality in surgical procedures.
  • The rise of personalized medicine: Role of technology.
  • Mental health apps: Revolution or hype?
  • Technology and the future of prosthetics.
  • Role of Big Data in healthcare decision making.
  • Virtual reality as a tool for pain management.
  • Impact of machine learning on drug discovery.
  • The promise of medical drones for emergency response.
  • Technology's role in combating antimicrobial resistance.
  • Electronic Health Records (EHRs): Blessing or curse?

>> More ideas: Med Research Topics

Health Technology Research Topics

Health technology is driving modern healthcare to new heights. From apps that monitor vital stats to robots assisting in surgeries, technology's touch is truly transformative. Take a look at these topics related to technology applied in healthcare:

  • Role of mobile apps in managing diabetes.
  • Impact of health technology on patient privacy.
  • Wearable tech: Fad or future of personal health monitoring?
  • How can AI help in battling mental health issues?
  • Role of digital tools in promoting preventive healthcare.
  • Smart homes for the elderly: Boon or bane?
  • Technology and its impact on health insurance.
  • The effectiveness of virtual therapy sessions.
  • Can health chatbots replace human doctors?
  • Technology's role in fighting the obesity epidemic.
  • The use of blockchain in health data management.
  • Impact of technology on sleep health.
  • Social media and its effect on mental health.
  • Prospects of 3D printing in creating medical equipment.
  • Tele-rehabilitation: An effective solution for physical therapy?

>> View more: Public Health Topics to Research

Communication Technology Research Topics

With technology at the helm, our ways of communicating are changing at an unprecedented pace. From simple text messages to immersive virtual conferences, technology has rewritten the rules of engagement. So, without further ado, let's explore these communication research ideas for technology that capture the essence of this revolution.

  • AI chatbots: Re-defining customer service.
  • The impact of 5G on global communication.
  • Augmented Reality: The future of digital marketing?
  • Is 'digital divide' hindering global communication?
  • Social media's role in shaping public opinion.
  • Can holographic communication become a reality?
  • Influence of emojis in digital communication.
  • The cybersecurity challenges in modern communication.
  • Future of journalism in the digital age.
  • How technology is reshaping political communication.
  • The influence of streaming platforms on viewing habits.
  • Privacy concerns in the age of instant messaging.
  • Can technology solve the issue of language barriers?
  • The rise of podcasting: A digital renaissance.
  • Role of virtual reality in remote communication.

Research Topics on Technology in Transportation

Technology is the driving force behind the dramatic changes in transportation, making journeys safer, more efficient, and eco-friendly. Whether it's autonomous vehicles or the concept of Hyperloop, there are many transportation technology topics for a research paper to choose from:

  • Electric vehicles: A step towards sustainable travel.
  • The role of AI in traffic management.
  • Pros and cons of autonomous vehicles.
  • Hyperloop: An ambitious vision of the future?
  • Drones in goods delivery: Efficiency vs. privacy.
  • Technology's role in reducing aviation accidents.
  • Challenges in implementing smart highways.
  • The implications of blockchain in logistics.
  • Could vertical takeoff and landing (VTOL) vehicles solve traffic problems?
  • Impact of GPS technology on transportation.
  • How has technology influenced public transit systems?
  • Role of 5G in future transportation.
  • Ethical concerns over self-driving cars.
  • Technology in maritime safety: Progress and hurdles.
  • The evolution of bicycle technology: From spokes to e-bikes.

Technology Research Paper Topics on Education

The intersection of technology and education is an exciting frontier with limitless possibilities. From online learning to interactive classrooms, you can explore various technology paper topics about education:

  • How does e-learning affect student engagement?
  • VR classrooms: A glimpse into the future?
  • Can AI tutors revolutionize personalized learning?
  • Digital textbooks versus traditional textbooks: A comparison.
  • Gamification in education: Innovation or distraction?
  • The impact of technology on special education.
  • How are Massive Open Online Courses (MOOCs) reshaping higher education?
  • The role of technology in inclusive education.
  • Cybersecurity in schools: Measures and challenges.
  • The potential of Augmented Reality (AR) in classroom learning.
  • How is technology influencing homeschooling trends?
  • Balancing technology and traditional methods in early childhood education.
  • Risks and benefits of student data tracking.
  • Can coding be the new literacy in the 21st century?
  • The influence of social media on academic performance.

>> Learn more: Education Research Paper Topics

Relationships and Technology Research Topics

In the digital age, technology also impacts our relationships. It has become an integral part of how we communicate, meet people, and sustain our connections. Discover some thought-provoking angles with these research paper topics about technology:

  • How do dating apps affect modern relationships?
  • The influence of social media on interpersonal communication.
  • Is technology enhancing or hindering long-distance relationships?
  • The psychology behind online dating: A study.
  • How do virtual reality environments impact social interaction?
  • Social media friendships: Genuine or superficial?
  • How does technology-mediated communication affect family dynamics?
  • The impact of technology on work-life balance.
  • The role of technology in sustaining long-term relationships.
  • How does the 'always connected' culture influence personal boundaries?
  • Cyberbullying and its effect on teenage relationships.
  • Can technology predict compatibility in relationships?
  • The effects of 'ghosting' in digital communication.
  • How technology assists in maintaining relationships among elderly populations.
  • Social media: A boon or bane for marital relationships?

Agriculture Technology Research Paper Topics

Modern agriculture is far from just tilling the soil and harvesting crops. Technology has made remarkable strides into the fields, innovating and improving agricultural processes. Take a glance at these technology research paper topic ideas:

  • Can drone technology transform crop monitoring?
  • Precision agriculture: Benefits and challenges.
  • Aquaponics and the future of sustainable farming.
  • How is artificial intelligence aiding in crop prediction?
  • Impact of blockchain technology in food traceability.
  • The role of IoT in smart farming.
  • Vertical farming : Is it a sustainable solution for urban food supply?
  • Innovations in irrigation technology for water conservation.
  • Automated farming: A boon or a threat to employment in agriculture?
  • How satellite imagery is improving crop disease detection.
  • Biotechnology in crop improvement: Pros and cons.
  • Nanotechnology in agriculture: Scope and limitations.
  • Role of robotics in livestock management.
  • Agricultural waste management through technology.
  • Is hydroponics the future of farming?

Technological Research Topics on Environment

Our planet is facing numerous environmental challenges, and technology may hold the key to solving many of these. With innovations ranging from renewable energy sources to waste management systems, the realm of technology offers a plethora of research angles. So, if you're curious about the intersection of technology and environment, this list of research topics is for you:

  • Innovations in waste management: A technology review.
  • The role of AI in predicting climate change impacts.
  • Renewable energy: Advancements in solar technology.
  • The impact of electric vehicles on carbon emissions.
  • Can smart agriculture help solve world hunger?
  • Role of technology in water purification and conservation.
  • The impact of IoT devices on energy consumption.
  • Technology solutions for oil spills.
  • Satellite technology in environmental monitoring.
  • Technological advances in forest conservation.
  • Green buildings: Sustainable construction technology.
  • Bioengineering: A solution to soil erosion?
  • Impact of nanotechnology on environmental conservation.
  • Ocean clean-up initiatives: Evaluating existing technology.
  • How can technology help in reducing air pollution?

>> View more: Environmental Science Research Topics

Energy & Power Technology Topics for Research Paper

Energy and power are two pivotal areas where technology is bringing unprecedented changes. You can investigate renewable energy sources or efficient power transmission. If you're excited about exploring the intricacies of energy and power advancements, here are some engaging technology topics for research papers:

  • Assessing the efficiency of wind energy technologies.
  • Power storage: Current and future technology.
  • Solar panel technology: Recent advancements and future predictions.
  • Can nuclear fusion be the answer to our energy crisis?
  • Smart grid technology: A revolution in power distribution.
  • Evaluating the impact of hydropower on ecosystems.
  • The role of AI in optimizing power consumption.
  • Biofuels vs. fossil fuels: A comparative study.
  • Electric vehicle charging infrastructure: Technological challenges and solutions.
  • Technology advancements in geothermal power.
  • How is IoT technology helping in energy conservation?
  • Harnessing wave and tidal energy: Technological possibilities.
  • Role of nanotechnology in improving solar cell efficiency.
  • Power transmission losses: Can technology provide a solution?
  • Assessing the future of coal technology in the era of renewable energy.

Research Topics about Technology in Finance

The finance sector has seen drastic changes with the rise of technology, which has revolutionized the way financial transactions are conducted and services are offered. Consider these research topics in technology applied in the finance sector:

  • Rise of cryptocurrency: An evaluation of Bitcoin's impact.
  • Algorithmic trading: How does it reshape financial markets?
  • Role of AI and machine learning in financial forecasting.
  • Technological challenges in implementing digital banking.
  • How is blockchain technology transforming financial services?
  • Cybersecurity risks in online banking: Identifying solutions.
  • FinTech startups: Disrupting traditional finance systems.
  • Role of technology in financial inclusion.
  • Assessing the impact of mobile wallets on the banking sector.
  • Automation in finance: Opportunities and threats.
  • Role of big data analytics in financial decision making.
  • AI-based robo-advisors vs. human financial advisors.
  • The future of insurance technology (InsurTech).
  • Can technology solve the issue of financial fraud?
  • Impact of regulatory technology (RegTech) in maintaining compliance.

>> More ideas: Finance Research Topics

War Technology Research Paper Topics

The nature of warfare has transformed significantly with the evolution of technology, shifting the battlegrounds from land, sea, and air to the realms of cyber and space. This transition opens up a range of topics to explore. Here are some research topics in the realm of war technology:

  • Drones in warfare: Ethical implications.
  • Cyber warfare: Assessing threats and defense strategies.
  • Autonomous weapons: A boon or a curse?
  • Implications of artificial intelligence in modern warfare.
  • Role of technology in intelligence gathering.
  • Satellite technology and its role in modern warfare.
  • The future of naval warfare: Autonomous ships and submarines.
  • Hypersonic weapons: Changing the dynamics of war.
  • Impact of nuclear technology in warfare.
  • Technology and warfare: Exploring the relationship.
  • Information warfare: The role of social media.
  • Space warfare: Future possibilities and implications.
  • Bio-warfare: Understanding technology's role in development and prevention.
  • Impact of virtual reality on military training.
  • War technology and international law: A critical examination.

Food Technology Topics for Research Papers

Food technology is a field that deals with the study of food production, preservation, and safety. It involves understanding how various techniques can be applied to increase shelf life and improve nutrition value of foods. Check out our collection of food technology research paper topic ideas:

  • Lab-grown meats: Sustainable solution or a mere hype?
  • How AI is enhancing food safety and quality?
  • Precision agriculture: Revolutionizing farming practices.
  • GMOs: Assessing benefits and potential risks.
  • Role of robotics in food manufacturing and packaging.
  • Smart kitchens: Streamlining cooking through technology.
  • Nanofood: Tiny technology, big impact.
  • Sustainable food systems: Role of technology.
  • Food traceability: Ensuring transparency and accountability.
  • Food delivery apps: Changing the face of dining out.
  • The rise of plant-based alternatives and their production technologies.
  • Virtual and augmented reality in culinary experiences.
  • Technology in mitigating food waste.
  • Innovations in food packaging: Impact on freshness and sustainability.
  • IoT in smart farming: Improving yield and reducing waste.

Entertainment Technology Topics

Entertainment technology is reinventing the ways we experience amusement. This industry is always presenting new angles for research and discussion, be it the rise of virtual reality in movies or the influence of streaming platforms on the music industry. Here's a list of unique research topics related to entertainment technology:

  • Impact of virtual reality on the movie industry.
  • Streaming platforms vs traditional media: A comparative study.
  • Technology in music: Evolution and future prospects.
  • eSports: Rise of a new form of entertainment.
  • Augmented reality in theme parks.
  • The transformation of theater with digital technology.
  • AI and film editing: Redefining the art.
  • The role of technology in the rise of independent cinema.
  • Podcasts: Revolutionizing radio with technology.
  • Immersive technologies in art exhibitions.
  • The influence of technology on fashion shows and design.
  • Livestreaming concerts: A new norm in the music industry?
  • Drones in entertainment: Applications and ethics.
  • Social media as an entertainment platform.
  • The transformation of journalism in the era of digital entertainment.

Technology Research Questions

As we navigate the ever-changing landscape of technology, numerous intriguing questions arise. Below, we present new research questions about technology that can fuel your intellectual pursuit.

  • What potential does quantum computing hold for resolving complex problems?
  • How will advancements in AI impact job security across different sectors?
  • In what ways can blockchain technology reform the existing financial systems?
  • How is nanotechnology revolutionizing the field of medicine?
  • What are the ethical implications surrounding the use of facial recognition technology?
  • How will the introduction of 6G change our communication patterns?
  • In what ways is green technology contributing to sustainable development?
  • Can virtual reality transform the way we approach education?
  • How are biometrics enhancing the security measures in today's digital world?
  • How is space technology influencing our understanding of the universe?
  • What role can technology play in solving the global water crisis?
  • How can technology be leveraged to combat climate change effectively?
  • How is technology transforming the landscape of modern agriculture?
  • Can technological advancements lead to a fully renewable energy-dependent world?
  • How does technology influence the dynamics of modern warfare?

Bottom Line on Research Topics in Technology

Technology is a rapidly evolving field, and there's always something new to explore. Whether you're writing for the computer sciences, information technology or food technology realm, there are endless ideas that you can research on. Pick one of these technology research paper topics and jumpstart your project.

Illustration

Trust professionals to ‘ write a research paper for me !’ Our team of expert writers is ready to assist you in crafting an exceptional research paper on any topic. Just reach out, and we'll provide you with high-quality work tailored to your needs.

Joe_Eckel_1_ab59a03630.jpg

Joe Eckel is an expert on Dissertations writing. He makes sure that each student gets precious insights on composing A-grade academic writing.

You may also like

how to write a research paper

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Springer Nature - PMC COVID-19 Collection

Logo of phenaturepg

Impacts of digital technologies on education and factors influencing schools' digital capacity and transformation: A literature review

Stella timotheou.

1 CYENS Center of Excellence & Cyprus University of Technology (Cyprus Interaction Lab), Cyprus, CYENS Center of Excellence & Cyprus University of Technology, Nicosia-Limassol, Cyprus

Ourania Miliou

Yiannis dimitriadis.

2 Universidad de Valladolid (UVA), Spain, Valladolid, Spain

Sara Villagrá Sobrino

Nikoleta giannoutsou, romina cachia.

3 JRC - Joint Research Centre of the European Commission, Seville, Spain

Alejandra Martínez Monés

Andri ioannou, associated data.

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Digital technologies have brought changes to the nature and scope of education and led education systems worldwide to adopt strategies and policies for ICT integration. The latter brought about issues regarding the quality of teaching and learning with ICTs, especially concerning the understanding, adaptation, and design of the education systems in accordance with current technological trends. These issues were emphasized during the recent COVID-19 pandemic that accelerated the use of digital technologies in education, generating questions regarding digitalization in schools. Specifically, many schools demonstrated a lack of experience and low digital capacity, which resulted in widening gaps, inequalities, and learning losses. Such results have engendered the need for schools to learn and build upon the experience to enhance their digital capacity and preparedness, increase their digitalization levels, and achieve a successful digital transformation. Given that the integration of digital technologies is a complex and continuous process that impacts different actors within the school ecosystem, there is a need to show how these impacts are interconnected and identify the factors that can encourage an effective and efficient change in the school environments. For this purpose, we conducted a non-systematic literature review. The results of the literature review were organized thematically based on the evidence presented about the impact of digital technology on education and the factors that affect the schools’ digital capacity and digital transformation. The findings suggest that ICT integration in schools impacts more than just students’ performance; it affects several other school-related aspects and stakeholders, too. Furthermore, various factors affect the impact of digital technologies on education. These factors are interconnected and play a vital role in the digital transformation process. The study results shed light on how ICTs can positively contribute to the digital transformation of schools and which factors should be considered for schools to achieve effective and efficient change.

Introduction

Digital technologies have brought changes to the nature and scope of education. Versatile and disruptive technological innovations, such as smart devices, the Internet of Things (IoT), artificial intelligence (AI), augmented reality (AR) and virtual reality (VR), blockchain, and software applications have opened up new opportunities for advancing teaching and learning (Gaol & Prasolova-Førland, 2021 ; OECD, 2021 ). Hence, in recent years, education systems worldwide have increased their investment in the integration of information and communication technology (ICT) (Fernández-Gutiérrez et al., 2020 ; Lawrence & Tar, 2018 ) and prioritized their educational agendas to adapt strategies or policies around ICT integration (European Commission, 2019 ). The latter brought about issues regarding the quality of teaching and learning with ICTs (Bates, 2015 ), especially concerning the understanding, adaptation, and design of education systems in accordance with current technological trends (Balyer & Öz, 2018 ). Studies have shown that despite the investment made in the integration of technology in schools, the results have not been promising, and the intended outcomes have not yet been achieved (Delgado et al., 2015 ; Lawrence & Tar, 2018 ). These issues were exacerbated during the COVID-19 pandemic, which forced teaching across education levels to move online (Daniel, 2020 ). Online teaching accelerated the use of digital technologies generating questions regarding the process, the nature, the extent, and the effectiveness of digitalization in schools (Cachia et al., 2021 ; König et al., 2020 ). Specifically, many schools demonstrated a lack of experience and low digital capacity, which resulted in widening gaps, inequalities, and learning losses (Blaskó et al., 2021 ; Di Pietro et al, 2020 ). Such results have engendered the need for schools to learn and build upon the experience in order to enhance their digital capacity (European Commission, 2020 ) and increase their digitalization levels (Costa et al., 2021 ). Digitalization offers possibilities for fundamental improvement in schools (OECD, 2021 ; Rott & Marouane, 2018 ) and touches many aspects of a school’s development (Delcker & Ifenthaler, 2021 ) . However, it is a complex process that requires large-scale transformative changes beyond the technical aspects of technology and infrastructure (Pettersson, 2021 ). Namely, digitalization refers to “ a series of deep and coordinated culture, workforce, and technology shifts and operating models ” (Brooks & McCormack, 2020 , p. 3) that brings cultural, organizational, and operational change through the integration of digital technologies (JISC, 2020 ). A successful digital transformation requires that schools increase their digital capacity levels, establishing the necessary “ culture, policies, infrastructure as well as digital competence of students and staff to support the effective integration of technology in teaching and learning practices ” (Costa et al, 2021 , p.163).

Given that the integration of digital technologies is a complex and continuous process that impacts different actors within the school ecosystem (Eng, 2005 ), there is a need to show how the different elements of the impact are interconnected and to identify the factors that can encourage an effective and efficient change in the school environment. To address the issues outlined above, we formulated the following research questions:

a) What is the impact of digital technologies on education?

b) Which factors might affect a school’s digital capacity and transformation?

In the present investigation, we conducted a non-systematic literature review of publications pertaining to the impact of digital technologies on education and the factors that affect a school’s digital capacity and transformation. The results of the literature review were organized thematically based on the evidence presented about the impact of digital technology on education and the factors which affect the schools’ digital capacity and digital transformation.

Methodology

The non-systematic literature review presented herein covers the main theories and research published over the past 17 years on the topic. It is based on meta-analyses and review papers found in scholarly, peer-reviewed content databases and other key studies and reports related to the concepts studied (e.g., digitalization, digital capacity) from professional and international bodies (e.g., the OECD). We searched the Scopus database, which indexes various online journals in the education sector with an international scope, to collect peer-reviewed academic papers. Furthermore, we used an all-inclusive Google Scholar search to include relevant key terms or to include studies found in the reference list of the peer-reviewed papers, and other key studies and reports related to the concepts studied by professional and international bodies. Lastly, we gathered sources from the Publications Office of the European Union ( https://op.europa.eu/en/home ); namely, documents that refer to policies related to digital transformation in education.

Regarding search terms, we first searched resources on the impact of digital technologies on education by performing the following search queries: “impact” OR “effects” AND “digital technologies” AND “education”, “impact” OR “effects” AND “ICT” AND “education”. We further refined our results by adding the terms “meta-analysis” and “review” or by adjusting the search options based on the features of each database to avoid collecting individual studies that would provide limited contributions to a particular domain. We relied on meta-analyses and review studies as these consider the findings of multiple studies to offer a more comprehensive view of the research in a given area (Schuele & Justice, 2006 ). Specifically, meta-analysis studies provided quantitative evidence based on statistically verifiable results regarding the impact of educational interventions that integrate digital technologies in school classrooms (Higgins et al., 2012 ; Tolani-Brown et al., 2011 ).

However, quantitative data does not offer explanations for the challenges or difficulties experienced during ICT integration in learning and teaching (Tolani-Brown et al., 2011 ). To fill this gap, we analyzed literature reviews and gathered in-depth qualitative evidence of the benefits and implications of technology integration in schools. In the analysis presented herein, we also included policy documents and reports from professional and international bodies and governmental reports, which offered useful explanations of the key concepts of this study and provided recent evidence on digital capacity and transformation in education along with policy recommendations. The inclusion and exclusion criteria that were considered in this study are presented in Table ​ Table1 1 .

Inclusion and exclusion criteria for the selection of resources on the impact of digital technologies on education

Inclusion criteriaExclusion criteria

• Published in 2005 or later

• Review and meta-analysis studies

• Formal education K-12

• Peer-reviewed articles

• Articles in English

• Reports from professional/international bodies

• Governmental reports

• Book chapters

• Ph.D. dissertations and theses

• Conference poster papers

• Conference papers without proceedings

• Resources on higher education

• Resources on pre-school education

• Individual studies

To ensure a reliable extraction of information from each study and assist the research synthesis we selected the study characteristics of interest (impact) and constructed coding forms. First, an overview of the synthesis was provided by the principal investigator who described the processes of coding, data entry, and data management. The coders followed the same set of instructions but worked independently. To ensure a common understanding of the process between coders, a sample of ten studies was tested. The results were compared, and the discrepancies were identified and resolved. Additionally, to ensure an efficient coding process, all coders participated in group meetings to discuss additions, deletions, and modifications (Stock, 1994 ). Due to the methodological diversity of the studied documents we began to synthesize the literature review findings based on similar study designs. Specifically, most of the meta-analysis studies were grouped in one category due to the quantitative nature of the measured impact. These studies tended to refer to student achievement (Hattie et al., 2014 ). Then, we organized the themes of the qualitative studies in several impact categories. Lastly, we synthesized both review and meta-analysis data across the categories. In order to establish a collective understanding of the concept of impact, we referred to a previous impact study by Balanskat ( 2009 ) which investigated the impact of technology in primary schools. In this context, the impact had a more specific ICT-related meaning and was described as “ a significant influence or effect of ICT on the measured or perceived quality of (parts of) education ” (Balanskat, 2009 , p. 9). In the study presented herein, the main impacts are in relation to learning and learners, teaching, and teachers, as well as other key stakeholders who are directly or indirectly connected to the school unit.

The study’s results identified multiple dimensions of the impact of digital technologies on students’ knowledge, skills, and attitudes; on equality, inclusion, and social integration; on teachers’ professional and teaching practices; and on other school-related aspects and stakeholders. The data analysis indicated various factors that might affect the schools’ digital capacity and transformation, such as digital competencies, the teachers’ personal characteristics and professional development, as well as the school’s leadership and management, administration, infrastructure, etc. The impacts and factors found in the literature review are presented below.

Impacts of digital technologies on students’ knowledge, skills, attitudes, and emotions

The impact of ICT use on students’ knowledge, skills, and attitudes has been investigated early in the literature. Eng ( 2005 ) found a small positive effect between ICT use and students' learning. Specifically, the author reported that access to computer-assisted instruction (CAI) programs in simulation or tutorial modes—used to supplement rather than substitute instruction – could enhance student learning. The author reported studies showing that teachers acknowledged the benefits of ICT on pupils with special educational needs; however, the impact of ICT on students' attainment was unclear. Balanskat et al. ( 2006 ) found a statistically significant positive association between ICT use and higher student achievement in primary and secondary education. The authors also reported improvements in the performance of low-achieving pupils. The use of ICT resulted in further positive gains for students, namely increased attention, engagement, motivation, communication and process skills, teamwork, and gains related to their behaviour towards learning. Evidence from qualitative studies showed that teachers, students, and parents recognized the positive impact of ICT on students' learning regardless of their competence level (strong/weak students). Punie et al. ( 2006 ) documented studies that showed positive results of ICT-based learning for supporting low-achieving pupils and young people with complex lives outside the education system. Liao et al. ( 2007 ) reported moderate positive effects of computer application instruction (CAI, computer simulations, and web-based learning) over traditional instruction on primary school student's achievement. Similarly, Tamim et al. ( 2011 ) reported small to moderate positive effects between the use of computer technology (CAI, ICT, simulations, computer-based instruction, digital and hypermedia) and student achievement in formal face-to-face classrooms compared to classrooms that did not use technology. Jewitt et al., ( 2011 ) found that the use of learning platforms (LPs) (virtual learning environments, management information systems, communication technologies, and information- and resource-sharing technologies) in schools allowed primary and secondary students to access a wider variety of quality learning resources, engage in independent and personalized learning, and conduct self- and peer-review; LPs also provide opportunities for teacher assessment and feedback. Similar findings were reported by Fu ( 2013 ), who documented a list of benefits and opportunities of ICT use. According to the author, the use of ICTs helps students access digital information and course content effectively and efficiently, supports student-centered and self-directed learning, as well as the development of a creative learning environment where more opportunities for critical thinking skills are offered, and promotes collaborative learning in a distance-learning environment. Higgins et al. ( 2012 ) found consistent but small positive associations between the use of technology and learning outcomes of school-age learners (5–18-year-olds) in studies linking the provision and use of technology with attainment. Additionally, Chauhan ( 2017 ) reported a medium positive effect of technology on the learning effectiveness of primary school students compared to students who followed traditional learning instruction.

The rise of mobile technologies and hardware devices instigated investigations into their impact on teaching and learning. Sung et al. ( 2016 ) reported a moderate effect on students' performance from the use of mobile devices in the classroom compared to the use of desktop computers or the non-use of mobile devices. Schmid et al. ( 2014 ) reported medium–low to low positive effects of technology integration (e.g., CAI, ICTs) in the classroom on students' achievement and attitude compared to not using technology or using technology to varying degrees. Tamim et al. ( 2015 ) found a low statistically significant effect of the use of tablets and other smart devices in educational contexts on students' achievement outcomes. The authors suggested that tablets offered additional advantages to students; namely, they reported improvements in students’ notetaking, organizational and communication skills, and creativity. Zheng et al. ( 2016 ) reported a small positive effect of one-to-one laptop programs on students’ academic achievement across subject areas. Additional reported benefits included student-centered, individualized, and project-based learning enhanced learner engagement and enthusiasm. Additionally, the authors found that students using one-to-one laptop programs tended to use technology more frequently than in non-laptop classrooms, and as a result, they developed a range of skills (e.g., information skills, media skills, technology skills, organizational skills). Haßler et al. ( 2016 ) found that most interventions that included the use of tablets across the curriculum reported positive learning outcomes. However, from 23 studies, five reported no differences, and two reported a negative effect on students' learning outcomes. Similar results were indicated by Kalati and Kim ( 2022 ) who investigated the effect of touchscreen technologies on young students’ learning. Specifically, from 53 studies, 34 advocated positive effects of touchscreen devices on children’s learning, 17 obtained mixed findings and two studies reported negative effects.

More recently, approaches that refer to the impact of gamification with the use of digital technologies on teaching and learning were also explored. A review by Pan et al. ( 2022 ) that examined the role of learning games in fostering mathematics education in K-12 settings, reported that gameplay improved students’ performance. Integration of digital games in teaching was also found as a promising pedagogical practice in STEM education that could lead to increased learning gains (Martinez et al., 2022 ; Wang et al., 2022 ). However, although Talan et al. ( 2020 ) reported a medium effect of the use of educational games (both digital and non-digital) on academic achievement, the effect of non-digital games was higher.

Over the last two years, the effects of more advanced technologies on teaching and learning were also investigated. Garzón and Acevedo ( 2019 ) found that AR applications had a medium effect on students' learning outcomes compared to traditional lectures. Similarly, Garzón et al. ( 2020 ) showed that AR had a medium impact on students' learning gains. VR applications integrated into various subjects were also found to have a moderate effect on students’ learning compared to control conditions (traditional classes, e.g., lectures, textbooks, and multimedia use, e.g., images, videos, animation, CAI) (Chen et al., 2022b ). Villena-Taranilla et al. ( 2022 ) noted the moderate effect of VR technologies on students’ learning when these were applied in STEM disciplines. In the same meta-analysis, Villena-Taranilla et al. ( 2022 ) highlighted the role of immersive VR, since its effect on students’ learning was greater (at a high level) across educational levels (K-6) compared to semi-immersive and non-immersive integrations. In another meta-analysis study, the effect size of the immersive VR was small and significantly differentiated across educational levels (Coban et al., 2022 ). The impact of AI on education was investigated by Su and Yang ( 2022 ) and Su et al. ( 2022 ), who showed that this technology significantly improved students’ understanding of AI computer science and machine learning concepts.

It is worth noting that the vast majority of studies referred to learning gains in specific subjects. Specifically, several studies examined the impact of digital technologies on students’ literacy skills and reported positive effects on language learning (Balanskat et al., 2006 ; Grgurović et al., 2013 ; Friedel et al., 2013 ; Zheng et al., 2016 ; Chen et al., 2022b ; Savva et al., 2022 ). Also, several studies documented positive effects on specific language learning areas, namely foreign language learning (Kao, 2014 ), writing (Higgins et al., 2012 ; Wen & Walters, 2022 ; Zheng et al., 2016 ), as well as reading and comprehension (Cheung & Slavin, 2011 ; Liao et al., 2007 ; Schwabe et al., 2022 ). ICTs were also found to have a positive impact on students' performance in STEM (science, technology, engineering, and mathematics) disciplines (Arztmann et al., 2022 ; Bado, 2022 ; Villena-Taranilla et al., 2022 ; Wang et al., 2022 ). Specifically, a number of studies reported positive impacts on students’ achievement in mathematics (Balanskat et al., 2006 ; Hillmayr et al., 2020 ; Li & Ma, 2010 ; Pan et al., 2022 ; Ran et al., 2022 ; Verschaffel et al., 2019 ; Zheng et al., 2016 ). Furthermore, studies documented positive effects of ICTs on science learning (Balanskat et al., 2006 ; Liao et al., 2007 ; Zheng et al., 2016 ; Hillmayr et al., 2020 ; Kalemkuş & Kalemkuş, 2022 ; Lei et al., 2022a ). Çelik ( 2022 ) also noted that computer simulations can help students understand learning concepts related to science. Furthermore, some studies documented that the use of ICTs had a positive impact on students’ achievement in other subjects, such as geography, history, music, and arts (Chauhan, 2017 ; Condie & Munro, 2007 ), and design and technology (Balanskat et al., 2006 ).

More specific positive learning gains were reported in a number of skills, e.g., problem-solving skills and pattern exploration skills (Higgins et al., 2012 ), metacognitive learning outcomes (Verschaffel et al., 2019 ), literacy skills, computational thinking skills, emotion control skills, and collaborative inquiry skills (Lu et al., 2022 ; Su & Yang, 2022 ; Su et al., 2022 ). Additionally, several investigations have reported benefits from the use of ICT on students’ creativity (Fielding & Murcia, 2022 ; Liu et al., 2022 ; Quah & Ng, 2022 ). Lastly, digital technologies were also found to be beneficial for enhancing students’ lifelong learning skills (Haleem et al., 2022 ).

Apart from gaining knowledge and skills, studies also reported improvement in motivation and interest in mathematics (Higgins et. al., 2019 ; Fadda et al., 2022 ) and increased positive achievement emotions towards several subjects during interventions using educational games (Lei et al., 2022a ). Chen et al. ( 2022a ) also reported a small but positive effect of digital health approaches in bullying and cyberbullying interventions with K-12 students, demonstrating that technology-based approaches can help reduce bullying and related consequences by providing emotional support, empowerment, and change of attitude. In their meta-review study, Su et al. ( 2022 ) also documented that AI technologies effectively strengthened students’ attitudes towards learning. In another meta-analysis, Arztmann et al. ( 2022 ) reported positive effects of digital games on motivation and behaviour towards STEM subjects.

Impacts of digital technologies on equality, inclusion and social integration

Although most of the reviewed studies focused on the impact of ICTs on students’ knowledge, skills, and attitudes, reports were also made on other aspects in the school context, such as equality, inclusion, and social integration. Condie and Munro ( 2007 ) documented research interventions investigating how ICT can support pupils with additional or special educational needs. While those interventions were relatively small scale and mostly based on qualitative data, their findings indicated that the use of ICTs enabled the development of communication, participation, and self-esteem. A recent meta-analysis (Baragash et al., 2022 ) with 119 participants with different disabilities, reported a significant overall effect size of AR on their functional skills acquisition. Koh’s meta-analysis ( 2022 ) also revealed that students with intellectual and developmental disabilities improved their competence and performance when they used digital games in the lessons.

Istenic Starcic and Bagon ( 2014 ) found that the role of ICT in inclusion and the design of pedagogical and technological interventions was not sufficiently explored in educational interventions with people with special needs; however, some benefits of ICT use were found in students’ social integration. The issue of gender and technology use was mentioned in a small number of studies. Zheng et al. ( 2016 ) reported a statistically significant positive interaction between one-to-one laptop programs and gender. Specifically, the results showed that girls and boys alike benefitted from the laptop program, but the effect on girls’ achievement was smaller than that on boys’. Along the same lines, Arztmann et al. ( 2022 ) reported no difference in the impact of game-based learning between boys and girls, arguing that boys and girls equally benefited from game-based interventions in STEM domains. However, results from a systematic review by Cussó-Calabuig et al. ( 2018 ) found limited and low-quality evidence on the effects of intensive use of computers on gender differences in computer anxiety, self-efficacy, and self-confidence. Based on their view, intensive use of computers can reduce gender differences in some areas and not in others, depending on contextual and implementation factors.

Impacts of digital technologies on teachers’ professional and teaching practices

Various research studies have explored the impact of ICT on teachers’ instructional practices and student assessment. Friedel et al. ( 2013 ) found that the use of mobile devices by students enabled teachers to successfully deliver content (e.g., mobile serious games), provide scaffolding, and facilitate synchronous collaborative learning. The integration of digital games in teaching and learning activities also gave teachers the opportunity to study and apply various pedagogical practices (Bado, 2022 ). Specifically, Bado ( 2022 ) found that teachers who implemented instructional activities in three stages (pre-game, game, and post-game) maximized students’ learning outcomes and engagement. For instance, during the pre-game stage, teachers focused on lectures and gameplay training, at the game stage teachers provided scaffolding on content, addressed technical issues, and managed the classroom activities. During the post-game stage, teachers organized activities for debriefing to ensure that the gameplay had indeed enhanced students’ learning outcomes.

Furthermore, ICT can increase efficiency in lesson planning and preparation by offering possibilities for a more collaborative approach among teachers. The sharing of curriculum plans and the analysis of students’ data led to clearer target settings and improvements in reporting to parents (Balanskat et al., 2006 ).

Additionally, the use and application of digital technologies in teaching and learning were found to enhance teachers’ digital competence. Balanskat et al. ( 2006 ) documented studies that revealed that the use of digital technologies in education had a positive effect on teachers’ basic ICT skills. The greatest impact was found on teachers with enough experience in integrating ICTs in their teaching and/or who had recently participated in development courses for the pedagogical use of technologies in teaching. Punie et al. ( 2006 ) reported that the provision of fully equipped multimedia portable computers and the development of online teacher communities had positive impacts on teachers’ confidence and competence in the use of ICTs.

Moreover, online assessment via ICTs benefits instruction. In particular, online assessments support the digitalization of students’ work and related logistics, allow teachers to gather immediate feedback and readjust to new objectives, and support the improvement of the technical quality of tests by providing more accurate results. Additionally, the capabilities of ICTs (e.g., interactive media, simulations) create new potential methods of testing specific skills, such as problem-solving and problem-processing skills, meta-cognitive skills, creativity and communication skills, and the ability to work productively in groups (Punie et al., 2006 ).

Impacts of digital technologies on other school-related aspects and stakeholders

There is evidence that the effective use of ICTs and the data transmission offered by broadband connections help improve administration (Balanskat et al., 2006 ). Specifically, ICTs have been found to provide better management systems to schools that have data gathering procedures in place. Condie and Munro ( 2007 ) reported impacts from the use of ICTs in schools in the following areas: attendance monitoring, assessment records, reporting to parents, financial management, creation of repositories for learning resources, and sharing of information amongst staff. Such data can be used strategically for self-evaluation and monitoring purposes which in turn can result in school improvements. Additionally, they reported that online access to other people with similar roles helped to reduce headteachers’ isolation by offering them opportunities to share insights into the use of ICT in learning and teaching and how it could be used to support school improvement. Furthermore, ICTs provided more efficient and successful examination management procedures, namely less time-consuming reporting processes compared to paper-based examinations and smooth communications between schools and examination authorities through electronic data exchange (Punie et al., 2006 ).

Zheng et al. ( 2016 ) reported that the use of ICTs improved home-school relationships. Additionally, Escueta et al. ( 2017 ) reported several ICT programs that had improved the flow of information from the school to parents. Particularly, they documented that the use of ICTs (learning management systems, emails, dedicated websites, mobile phones) allowed for personalized and customized information exchange between schools and parents, such as attendance records, upcoming class assignments, school events, and students’ grades, which generated positive results on students’ learning outcomes and attainment. Such information exchange between schools and families prompted parents to encourage their children to put more effort into their schoolwork.

The above findings suggest that the impact of ICT integration in schools goes beyond students’ performance in school subjects. Specifically, it affects a number of school-related aspects, such as equality and social integration, professional and teaching practices, and diverse stakeholders. In Table ​ Table2, 2 , we summarize the different impacts of digital technologies on school stakeholders based on the literature review, while in Table ​ Table3 3 we organized the tools/platforms and practices/policies addressed in the meta-analyses, literature reviews, EU reports, and international bodies included in the manuscript.

The impact of digital technologies on schools’ stakeholders based on the literature review

ImpactsReferences
Students
  Knowledge, skills, attitudes, and emotions
    • Learning gains from the use of ICTs across the curriculumEng, ; Balanskat et al., ; Liao et al., ; Tamim et al., ; Higgins et al., ; Chauhan, ; Sung et al., ; Schmid et al., ; Tamim et al., ; Zheng et al., ; Haßler et al., ; Kalati & Kim, ; Martinez et al., ; Talan et al., ; Panet al., ; Garzón & Acevedo, ; Garzón et al., ; Villena-Taranilla, et al., ; Coban et al.,
    • Positive learning gains from the use of ICTs in specific school subjects (e.g., mathematics, literacy, language, science)Arztmann et al., ; Villena-Taranilla, et al., ; Chen et al., ; Balanskat et al., ; Grgurović, et al., ; Friedel et al., ; Zheng et al., ; Savva et al., ; Kao, ; Higgins et al., ; Wen & Walters, ; Liao et al., ; Cheung & Slavin, ; Schwabe et al., ; Li & Ma, ; Verschaffel et al., ; Ran et al., ; Liao et al., ; Hillmayr et al., ; Kalemkuş & Kalemkuş, ; Lei et al., ; Condie & Munro, ; Chauhan, ; Bado, ; Wang et al., ; Pan et al.,
    • Positive learning gains for special needs students and low-achieving studentsEng, ; Balanskat et al., ; Punie et al., ; Koh,
    • Oportunities to develop a range of skills (e.g., subject-related skills, communication skills, negotiation skills, emotion control skills, organizational skills, critical thinking skills, creativity, metacognitive skills, life, and career skills)Balanskat et al., ; Fu, ; Tamim et al., ; Zheng et al., ; Higgins et al., ; Verschaffel et al., ; Su & Yang, ; Su et al., ; Lu et al., ; Liu et al., ; Quah & Ng, ; Fielding & Murcia, ; Tang et al., ; Haleem et al.,
    • Oportunities to develop digital skills (e.g., information skills, media skills, ICT skills)Zheng et al., ; Su & Yang, ; Lu et al., ; Su et al.,
    • Positive attitudes and behaviours towards ICTs, positive emotions (e.g., increased interest, motivation, attention, engagement, confidence, reduced anxiety, positive achievement emotions, reduction in bullying and cyberbullying)Balanskat et al., ; Schmid et al., ; Zheng et al., ; Fadda et al., ; Higgins et al., ; Chen et al., ; Lei et al., ; Arztmann et al., ; Su et al.,
  Learning experience
    • Enhance access to resourcesJewitt et al., ; Fu,
    • Opportunities to experience various learning practices (e.g., active learning, learner-centred learning, independent and personalized learning, collaborative learning, self-directed learning, self- and peer-review)Jewitt et al., ; Fu,
    • Improved access to teacher assessment and feedbackJewitt et al.,
Equality, inclusion, and social integration
    • Improved communication, functional skills, participation, self-esteem, and engagement of special needs studentsCondie & Munro, ; Baragash et al., ; Koh,
    • Enhanced social interaction for students in general and for students with learning difficultiesIstenic Starcic & Bagon,
    • Benefits for both girls and boysZheng et al., ; Arztmann et al.,
Teachers
  Professional practice
    • Development of digital competenceBalanskat et al.,
    • Positive attitudes and behaviours towards ICTs (e.g., increased confidence)Punie et al., ,
    • Formalized collaborative planning between teachersBalanskat et al.,
    • Improved reporting to parentsBalanskat et al.,
Teaching practice
    • Efficiency in lesson planning and preparationBalanskat et al.,
    • Facilitate assessment through the provision of immediate feedbackPunie et al.,
    • Improvements in the technical quality of testsPunie et al.,
    • New methods of testing specific skills (e.g., problem-solving skills, meta-cognitive skills)Punie et al.,
    • Successful content delivery and lessonsFriedel et al.,
    • Application of different instructional practices (e.g., scaffolding, synchronous collaborative learning, online learning, blended learning, hybrid learning)Friedel et al., ; Bado, ; Kazu & Yalçin, ; Ulum,
Administrators
  Data-based decision-making
    • Improved data-gathering processesBalanskat et al.,
    • Support monitoring and evaluation processes (e.g., attendance monitoring, financial management, assessment records)Condie & Munro,
Organizational processes
    • Access to learning resources via the creation of repositoriesCondie & Munro,
    • Information sharing between school staffCondie & Munro,
    • Smooth communications with external authorities (e.g., examination results)Punie et al.,
    • Efficient and successful examination management proceduresPunie et al.,
  Home-school communication
    • Support reporting to parentsCondie & Munro,
    • Improved flow of communication between the school and parents (e.g., customized and personalized communications)Escueta et al.,
School leaders
  Professional practice
    • Reduced headteacher isolationCondie & Munro,
    • Improved access to insights about practices for school improvementCondie & Munro,
Parents
  Home-school relationships
    • Improved home-school relationshipsZheng et al.,
    • Increased parental involvement in children’s school lifeEscueta et al.,

Tools/platforms and practices/policies addressed in the meta-analyses, literature reviews, EU reports, and international bodies included in the manuscript

Technologies/tools/practices/policiesReferences
ICT general – various types of technologies

Eng, (review)

Moran et al., (meta-analysis)

Balanskat et al., (report)

Punie et al., (review)

Fu, (review)

Higgins et al., (report)

Chauhan, (meta-analysis)

Schmid et al., (meta-analysis)

Grgurović et al., (meta-analysis)

Higgins et al., (meta-analysis)

Wen & Walters, (meta-analysis)

Cheung & Slavin, (meta-analysis)

Li & Ma, (meta-analysis)

Hillmayr et al., (meta-analysis)

Verschaffel et al., (systematic review)

Ran et al., (meta-analysis)

Fielding & Murcia, (systematic review)

Tang et al., (review)

Haleem et al., (review)

Condie & Munro, (review)

Underwood, (review)

Istenic Starcic & Bagon, (review)

Cussó-Calabuig et al., (systematic review)

Escueta et al. ( ) (review)

Archer et al., (meta-analysis)

Lee et al., (meta-analysis)

Delgado et al., (review)

Di Pietro et al., (report)

Practices/policies on schools’ digital transformation

Bingimlas, (review)

Hardman, (review)

Hattie, (synthesis of multiple meta-analysis)

Trucano, (book-Knowledge maps)

Ređep, (policy study)

Conrads et al, (report)

European Commission, (EU report)

Elkordy & Lovinelli, (book chapter)

Eurydice, (EU report)

Vuorikari et al., (JRC paper)

Sellar, (review)

European Commission, (EU report)

OECD, (international paper)

Computer-assisted instruction, computer simulations, activeboards, and web-based learning

Liao et al., (meta-analysis)

Tamim et al., (meta-analysis)

Çelik, (review)

Moran et al., (meta-analysis)

Eng, (review)

Learning platforms (LPs) (virtual learning environments, management information systems, communication technologies and information and resource sharing technologies)Jewitt et al., (report)
Mobile devices—touch screens (smart devices, tablets, laptops)

Sung et al., (meta-analysis and research synthesis)

Tamim et al., (meta-analysis)

Tamim et al., (systematic review and meta-analysis)

Zheng et al., (meta-analysis and research synthesis)

Haßler et al., (review)

Kalati & Kim, (systematic review)

Friedel et al., (meta-analysis and review)

Chen et al., (meta-analysis)

Schwabe et al., (meta-analysis)

Punie et al., (review)

Digital games (various types e.g., adventure, serious; various domains e.g., history, science)

Wang et al., (meta-analysis)

Arztmann et al., (meta-analysis)

Martinez et al., (systematic review)

Talan et al., (meta-analysis)

Pan et al., (systematic review)

Chen et al., (meta-analysis)

Kao, (meta-analysis)

Fadda et al., (meta-analysis)

Lu et al., (meta-analysis)

Lei et al., (meta-analysis)

Koh, (meta-analysis)

Bado, (review)

Augmented reality (AR)

Garzón & Acevedo, (meta-analysis)

Garzón et al., (meta-analysis and research synthesis)

Kalemkuş & Kalemkuş, (meta-analysis)

Baragash et al., (meta-analysis)

Virtual reality (VR)

Immersive virtual reality (IVR)

Villena-Taranilla et al., (meta-analysis)

Chen et al., (meta-analysis)

Coban et al., (meta-analysis)

Artificial intelligence (AI) and robotics

Su & Yang, (review)

Su et al., (meta review)

Online learning/elearning

Ulum, (meta-analysis)

Cheok & Wong, (review)

Blended learningGrgurović et al., (meta-analysis)
Synchronous parallel participationFriedel et al., (meta-analysis and review)
Electronic books/digital storytelling

Savva et al., (meta-analysis)

Quah & Ng, (systematic review)

Multimedia technologyLiu et al., (meta-analysis)
Hybrid learningKazu & Yalçin, (meta-analysis)

Additionally, based on the results of the literature review, there are many types of digital technologies with different affordances (see, for example, studies on VR vs Immersive VR), which evolve over time (e.g. starting from CAIs in 2005 to Augmented and Virtual reality 2020). Furthermore, these technologies are linked to different pedagogies and policy initiatives, which are critical factors in the study of impact. Table ​ Table3 3 summarizes the different tools and practices that have been used to examine the impact of digital technologies on education since 2005 based on the review results.

Factors that affect the integration of digital technologies

Although the analysis of the literature review demonstrated different impacts of the use of digital technology on education, several authors highlighted the importance of various factors, besides the technology itself, that affect this impact. For example, Liao et al. ( 2007 ) suggested that future studies should carefully investigate which factors contribute to positive outcomes by clarifying the exact relationship between computer applications and learning. Additionally, Haßler et al., ( 2016 ) suggested that the neutral findings regarding the impact of tablets on students learning outcomes in some of the studies included in their review should encourage educators, school leaders, and school officials to further investigate the potential of such devices in teaching and learning. Several other researchers suggested that a number of variables play a significant role in the impact of ICTs on students’ learning that could be attributed to the school context, teaching practices and professional development, the curriculum, and learners’ characteristics (Underwood, 2009 ; Tamim et al., 2011 ; Higgins et al., 2012 ; Archer et al., 2014 ; Sung et al., 2016 ; Haßler et al., 2016 ; Chauhan, 2017 ; Lee et al., 2020 ; Tang et al., 2022 ).

Digital competencies

One of the most common challenges reported in studies that utilized digital tools in the classroom was the lack of students’ skills on how to use them. Fu ( 2013 ) found that students’ lack of technical skills is a barrier to the effective use of ICT in the classroom. Tamim et al. ( 2015 ) reported that students faced challenges when using tablets and smart mobile devices, associated with the technical issues or expertise needed for their use and the distracting nature of the devices and highlighted the need for teachers’ professional development. Higgins et al. ( 2012 ) reported that skills training about the use of digital technologies is essential for learners to fully exploit the benefits of instruction.

Delgado et al. ( 2015 ), meanwhile, reported studies that showed a strong positive association between teachers’ computer skills and students’ use of computers. Teachers’ lack of ICT skills and familiarization with technologies can become a constraint to the effective use of technology in the classroom (Balanskat et al., 2006 ; Delgado et al., 2015 ).

It is worth noting that the way teachers are introduced to ICTs affects the impact of digital technologies on education. Previous studies have shown that teachers may avoid using digital technologies due to limited digital skills (Balanskat, 2006 ), or they prefer applying “safe” technologies, namely technologies that their own teachers used and with which they are familiar (Condie & Munro, 2007 ). In this regard, the provision of digital skills training and exposure to new digital tools might encourage teachers to apply various technologies in their lessons (Condie & Munro, 2007 ). Apart from digital competence, technical support in the school setting has also been shown to affect teachers’ use of technology in their classrooms (Delgado et al., 2015 ). Ferrari et al. ( 2011 ) found that while teachers’ use of ICT is high, 75% stated that they needed more institutional support and a shift in the mindset of educational actors to achieve more innovative teaching practices. The provision of support can reduce time and effort as well as cognitive constraints, which could cause limited ICT integration in the school lessons by teachers (Escueta et al., 2017 ).

Teachers’ personal characteristics, training approaches, and professional development

Teachers’ personal characteristics and professional development affect the impact of digital technologies on education. Specifically, Cheok and Wong ( 2015 ) found that teachers’ personal characteristics (e.g., anxiety, self-efficacy) are associated with their satisfaction and engagement with technology. Bingimlas ( 2009 ) reported that lack of confidence, resistance to change, and negative attitudes in using new technologies in teaching are significant determinants of teachers’ levels of engagement in ICT. The same author reported that the provision of technical support, motivation support (e.g., awards, sufficient time for planning), and training on how technologies can benefit teaching and learning can eliminate the above barriers to ICT integration. Archer et al. ( 2014 ) found that comfort levels in using technology are an important predictor of technology integration and argued that it is essential to provide teachers with appropriate training and ongoing support until they are comfortable with using ICTs in the classroom. Hillmayr et al. ( 2020 ) documented that training teachers on ICT had an important effecton students’ learning.

According to Balanskat et al. ( 2006 ), the impact of ICTs on students’ learning is highly dependent on the teachers’ capacity to efficiently exploit their application for pedagogical purposes. Results obtained from the Teaching and Learning International Survey (TALIS) (OECD, 2021 ) revealed that although schools are open to innovative practices and have the capacity to adopt them, only 39% of teachers in the European Union reported that they are well or very well prepared to use digital technologies for teaching. Li and Ma ( 2010 ) and Hardman ( 2019 ) showed that the positive effect of technology on students’ achievement depends on the pedagogical practices used by teachers. Schmid et al. ( 2014 ) reported that learning was best supported when students were engaged in active, meaningful activities with the use of technological tools that provided cognitive support. Tamim et al. ( 2015 ) compared two different pedagogical uses of tablets and found a significant moderate effect when the devices were used in a student-centered context and approach rather than within teacher-led environments. Similarly, Garzón and Acevedo ( 2019 ) and Garzón et al. ( 2020 ) reported that the positive results from the integration of AR applications could be attributed to the existence of different variables which could influence AR interventions (e.g., pedagogical approach, learning environment, and duration of the intervention). Additionally, Garzón et al. ( 2020 ) suggested that the pedagogical resources that teachers used to complement their lectures and the pedagogical approaches they applied were crucial to the effective integration of AR on students’ learning gains. Garzón and Acevedo ( 2019 ) also emphasized that the success of a technology-enhanced intervention is based on both the technology per se and its characteristics and on the pedagogical strategies teachers choose to implement. For instance, their results indicated that the collaborative learning approach had the highest impact on students’ learning gains among other approaches (e.g., inquiry-based learning, situated learning, or project-based learning). Ran et al. ( 2022 ) also found that the use of technology to design collaborative and communicative environments showed the largest moderator effects among the other approaches.

Hattie ( 2008 ) reported that the effective use of computers is associated with training teachers in using computers as a teaching and learning tool. Zheng et al. ( 2016 ) noted that in addition to the strategies teachers adopt in teaching, ongoing professional development is also vital in ensuring the success of technology implementation programs. Sung et al. ( 2016 ) found that research on the use of mobile devices to support learning tends to report that the insufficient preparation of teachers is a major obstacle in implementing effective mobile learning programs in schools. Friedel et al. ( 2013 ) found that providing training and support to teachers increased the positive impact of the interventions on students’ learning gains. Trucano ( 2005 ) argued that positive impacts occur when digital technologies are used to enhance teachers’ existing pedagogical philosophies. Higgins et al. ( 2012 ) found that the types of technologies used and how they are used could also affect students’ learning. The authors suggested that training and professional development of teachers that focuses on the effective pedagogical use of technology to support teaching and learning is an important component of successful instructional approaches (Higgins et al., 2012 ). Archer et al. ( 2014 ) found that studies that reported ICT interventions during which teachers received training and support had moderate positive effects on students’ learning outcomes, which were significantly higher than studies where little or no detail about training and support was mentioned. Fu ( 2013 ) reported that the lack of teachers’ knowledge and skills on the technical and instructional aspects of ICT use in the classroom, in-service training, pedagogy support, technical and financial support, as well as the lack of teachers’ motivation and encouragement to integrate ICT on their teaching were significant barriers to the integration of ICT in education.

School leadership and management

Management and leadership are important cornerstones in the digital transformation process (Pihir et al., 2018 ). Zheng et al. ( 2016 ) documented leadership among the factors positively affecting the successful implementation of technology integration in schools. Strong leadership, strategic planning, and systematic integration of digital technologies are prerequisites for the digital transformation of education systems (Ređep, 2021 ). Management and leadership play a significant role in formulating policies that are translated into practice and ensure that developments in ICT become embedded into the life of the school and in the experiences of staff and pupils (Condie & Munro, 2007 ). Policy support and leadership must include the provision of an overall vision for the use of digital technologies in education, guidance for students and parents, logistical support, as well as teacher training (Conrads et al., 2017 ). Unless there is a commitment throughout the school, with accountability for progress at key points, it is unlikely for ICT integration to be sustained or become part of the culture (Condie & Munro, 2007 ). To achieve this, principals need to adopt and promote a whole-institution strategy and build a strong mutual support system that enables the school’s technological maturity (European Commission, 2019 ). In this context, school culture plays an essential role in shaping the mindsets and beliefs of school actors towards successful technology integration. Condie and Munro ( 2007 ) emphasized the importance of the principal’s enthusiasm and work as a source of inspiration for the school staff and the students to cultivate a culture of innovation and establish sustainable digital change. Specifically, school leaders need to create conditions in which the school staff is empowered to experiment and take risks with technology (Elkordy & Lovinelli, 2020 ).

In order for leaders to achieve the above, it is important to develop capacities for learning and leading, advocating professional learning, and creating support systems and structures (European Commission, 2019 ). Digital technology integration in education systems can be challenging and leadership needs guidance to achieve it. Such guidance can be introduced through the adoption of new methods and techniques in strategic planning for the integration of digital technologies (Ređep, 2021 ). Even though the role of leaders is vital, the relevant training offered to them has so far been inadequate. Specifically, only a third of the education systems in Europe have put in place national strategies that explicitly refer to the training of school principals (European Commission, 2019 , p. 16).

Connectivity, infrastructure, and government and other support

The effective integration of digital technologies across levels of education presupposes the development of infrastructure, the provision of digital content, and the selection of proper resources (Voogt et al., 2013 ). Particularly, a high-quality broadband connection in the school increases the quality and quantity of educational activities. There is evidence that ICT increases and formalizes cooperative planning between teachers and cooperation with managers, which in turn has a positive impact on teaching practices (Balanskat et al., 2006 ). Additionally, ICT resources, including software and hardware, increase the likelihood of teachers integrating technology into the curriculum to enhance their teaching practices (Delgado et al., 2015 ). For example, Zheng et al. ( 2016 ) found that the use of one-on-one laptop programs resulted in positive changes in teaching and learning, which would not have been accomplished without the infrastructure and technical support provided to teachers. Delgado et al. ( 2015 ) reported that limited access to technology (insufficient computers, peripherals, and software) and lack of technical support are important barriers to ICT integration. Access to infrastructure refers not only to the availability of technology in a school but also to the provision of a proper amount and the right types of technology in locations where teachers and students can use them. Effective technical support is a central element of the whole-school strategy for ICT (Underwood, 2009 ). Bingimlas ( 2009 ) reported that lack of technical support in the classroom and whole-school resources (e.g., failing to connect to the Internet, printers not printing, malfunctioning computers, and working on old computers) are significant barriers that discourage the use of ICT by teachers. Moreover, poor quality and inadequate hardware maintenance, and unsuitable educational software may discourage teachers from using ICTs (Balanskat et al., 2006 ; Bingimlas, 2009 ).

Government support can also impact the integration of ICTs in teaching. Specifically, Balanskat et al. ( 2006 ) reported that government interventions and training programs increased teachers’ enthusiasm and positive attitudes towards ICT and led to the routine use of embedded ICT.

Lastly, another important factor affecting digital transformation is the development and quality assurance of digital learning resources. Such resources can be support textbooks and related materials or resources that focus on specific subjects or parts of the curriculum. Policies on the provision of digital learning resources are essential for schools and can be achieved through various actions. For example, some countries are financing web portals that become repositories, enabling teachers to share resources or create their own. Additionally, they may offer e-learning opportunities or other services linked to digital education. In other cases, specific agencies of projects have also been set up to develop digital resources (Eurydice, 2019 ).

Administration and digital data management

The digital transformation of schools involves organizational improvements at the level of internal workflows, communication between the different stakeholders, and potential for collaboration. Vuorikari et al. ( 2020 ) presented evidence that digital technologies supported the automation of administrative practices in schools and reduced the administration’s workload. There is evidence that digital data affects the production of knowledge about schools and has the power to transform how schooling takes place. Specifically, Sellar ( 2015 ) reported that data infrastructure in education is developing due to the demand for “ information about student outcomes, teacher quality, school performance, and adult skills, associated with policy efforts to increase human capital and productivity practices ” (p. 771). In this regard, practices, such as datafication which refers to the “ translation of information about all kinds of things and processes into quantified formats” have become essential for decision-making based on accountability reports about the school’s quality. The data could be turned into deep insights about education or training incorporating ICTs. For example, measuring students’ online engagement with the learning material and drawing meaningful conclusions can allow teachers to improve their educational interventions (Vuorikari et al., 2020 ).

Students’ socioeconomic background and family support

Research show that the active engagement of parents in the school and their support for the school’s work can make a difference to their children’s attitudes towards learning and, as a result, their achievement (Hattie, 2008 ). In recent years, digital technologies have been used for more effective communication between school and family (Escueta et al., 2017 ). The European Commission ( 2020 ) presented data from a Eurostat survey regarding the use of computers by students during the pandemic. The data showed that younger pupils needed additional support and guidance from parents and the challenges were greater for families in which parents had lower levels of education and little to no digital skills.

In this regard, the socio-economic background of the learners and their socio-cultural environment also affect educational achievements (Punie et al., 2006 ). Trucano documented that the use of computers at home positively influenced students’ confidence and resulted in more frequent use at school, compared to students who had no home access (Trucano, 2005 ). In this sense, the socio-economic background affects the access to computers at home (OECD, 2015 ) which in turn influences the experience of ICT, an important factor for school achievement (Punie et al., 2006 ; Underwood, 2009 ). Furthermore, parents from different socio-economic backgrounds may have different abilities and availability to support their children in their learning process (Di Pietro et al., 2020 ).

Schools’ socioeconomic context and emergency situations

The socio-economic context of the school is closely related to a school’s digital transformation. For example, schools in disadvantaged, rural, or deprived areas are likely to lack the digital capacity and infrastructure required to adapt to the use of digital technologies during emergency periods, such as the COVID-19 pandemic (Di Pietro et al., 2020 ). Data collected from school principals confirmed that in several countries, there is a rural/urban divide in connectivity (OECD, 2015 ).

Emergency periods also affect the digitalization of schools. The COVID-19 pandemic led to the closure of schools and forced them to seek appropriate and connective ways to keep working on the curriculum (Di Pietro et al., 2020 ). The sudden large-scale shift to distance and online teaching and learning also presented challenges around quality and equity in education, such as the risk of increased inequalities in learning, digital, and social, as well as teachers facing difficulties coping with this demanding situation (European Commission, 2020 ).

Looking at the findings of the above studies, we can conclude that the impact of digital technologies on education is influenced by various actors and touches many aspects of the school ecosystem. Figure  1 summarizes the factors affecting the digital technologies’ impact on school stakeholders based on the findings from the literature review.

An external file that holds a picture, illustration, etc.
Object name is 10639_2022_11431_Fig1_HTML.jpg

Factors that affect the impact of ICTs on education

The findings revealed that the use of digital technologies in education affects a variety of actors within a school’s ecosystem. First, we observed that as technologies evolve, so does the interest of the research community to apply them to school settings. Figure  2 summarizes the trends identified in current research around the impact of digital technologies on schools’ digital capacity and transformation as found in the present study. Starting as early as 2005, when computers, simulations, and interactive boards were the most commonly applied tools in school interventions (e.g., Eng, 2005 ; Liao et al., 2007 ; Moran et al., 2008 ; Tamim et al., 2011 ), moving towards the use of learning platforms (Jewitt et al., 2011 ), then to the use of mobile devices and digital games (e.g., Tamim et al., 2015 ; Sung et al., 2016 ; Talan et al., 2020 ), as well as e-books (e.g., Savva et al., 2022 ), to the more recent advanced technologies, such as AR and VR applications (e.g., Garzón & Acevedo, 2019 ; Garzón et al., 2020 ; Kalemkuş & Kalemkuş, 2022 ), or robotics and AI (e.g., Su & Yang, 2022 ; Su et al., 2022 ). As this evolution shows, digital technologies are a concept in flux with different affordances and characteristics. Additionally, from an instructional perspective, there has been a growing interest in different modes and models of content delivery such as online, blended, and hybrid modes (e.g., Cheok & Wong, 2015 ; Kazu & Yalçin, 2022 ; Ulum, 2022 ). This is an indication that the value of technologies to support teaching and learning as well as other school-related practices is increasingly recognized by the research and school community. The impact results from the literature review indicate that ICT integration on students’ learning outcomes has effects that are small (Coban et al., 2022 ; Eng, 2005 ; Higgins et al., 2012 ; Schmid et al., 2014 ; Tamim et al., 2015 ; Zheng et al., 2016 ) to moderate (Garzón & Acevedo, 2019 ; Garzón et al., 2020 ; Liao et al., 2007 ; Sung et al., 2016 ; Talan et al., 2020 ; Wen & Walters, 2022 ). That said, a number of recent studies have reported high effect sizes (e.g., Kazu & Yalçin, 2022 ).

An external file that holds a picture, illustration, etc.
Object name is 10639_2022_11431_Fig2_HTML.jpg

Current work and trends in the study of the impact of digital technologies on schools’ digital capacity

Based on these findings, several authors have suggested that the impact of technology on education depends on several variables and not on the technology per se (Tamim et al., 2011 ; Higgins et al., 2012 ; Archer et al., 2014 ; Sung et al., 2016 ; Haßler et al., 2016 ; Chauhan, 2017 ; Lee et al., 2020 ; Lei et al., 2022a ). While the impact of ICTs on student achievement has been thoroughly investigated by researchers, other aspects related to school life that are also affected by ICTs, such as equality, inclusion, and social integration have received less attention. Further analysis of the literature review has revealed a greater investment in ICT interventions to support learning and teaching in the core subjects of literacy and STEM disciplines, especially mathematics, and science. These were the most common subjects studied in the reviewed papers often drawing on national testing results, while studies that investigated other subject areas, such as social studies, were limited (Chauhan, 2017 ; Condie & Munro, 2007 ). As such, research is still lacking impact studies that focus on the effects of ICTs on a range of curriculum subjects.

The qualitative research provided additional information about the impact of digital technologies on education, documenting positive effects and giving more details about implications, recommendations, and future research directions. Specifically, the findings regarding the role of ICTs in supporting learning highlight the importance of teachers’ instructional practice and the learning context in the use of technologies and consequently their impact on instruction (Çelik, 2022 ; Schmid et al., 2014 ; Tamim et al., 2015 ). The review also provided useful insights regarding the various factors that affect the impact of digital technologies on education. These factors are interconnected and play a vital role in the transformation process. Specifically, these factors include a) digital competencies; b) teachers’ personal characteristics and professional development; c) school leadership and management; d) connectivity, infrastructure, and government support; e) administration and data management practices; f) students’ socio-economic background and family support and g) the socioeconomic context of the school and emergency situations. It is worth noting that we observed factors that affect the integration of ICTs in education but may also be affected by it. For example, the frequent use of ICTs and the use of laptops by students for instructional purposes positively affect the development of digital competencies (Zheng et al., 2016 ) and at the same time, the digital competencies affect the use of ICTs (Fu, 2013 ; Higgins et al., 2012 ). As a result, the impact of digital technologies should be explored more as an enabler of desirable and new practices and not merely as a catalyst that improves the output of the education process i.e. namely student attainment.

Conclusions

Digital technologies offer immense potential for fundamental improvement in schools. However, investment in ICT infrastructure and professional development to improve school education are yet to provide fruitful results. Digital transformation is a complex process that requires large-scale transformative changes that presuppose digital capacity and preparedness. To achieve such changes, all actors within the school’s ecosystem need to share a common vision regarding the integration of ICTs in education and work towards achieving this goal. Our literature review, which synthesized quantitative and qualitative data from a list of meta-analyses and review studies, provided useful insights into the impact of ICTs on different school stakeholders and showed that the impact of digital technologies touches upon many different aspects of school life, which are often overlooked when the focus is on student achievement as the final output of education. Furthermore, the concept of digital technologies is a concept in flux as technologies are not only different among them calling for different uses in the educational practice but they also change through time. Additionally, we opened a forum for discussion regarding the factors that affect a school’s digital capacity and transformation. We hope that our study will inform policy, practice, and research and result in a paradigm shift towards more holistic approaches in impact and assessment studies.

Study limitations and future directions

We presented a review of the study of digital technologies' impact on education and factors influencing schools’ digital capacity and transformation. The study results were based on a non-systematic literature review grounded on the acquisition of documentation in specific databases. Future studies should investigate more databases to corroborate and enhance our results. Moreover, search queries could be enhanced with key terms that could provide additional insights about the integration of ICTs in education, such as “policies and strategies for ICT integration in education”. Also, the study drew information from meta-analyses and literature reviews to acquire evidence about the effects of ICT integration in schools. Such evidence was mostly based on the general conclusions of the studies. It is worth mentioning that, we located individual studies which showed different, such as negative or neutral results. Thus, further insights are needed about the impact of ICTs on education and the factors influencing the impact. Furthermore, the nature of the studies included in meta-analyses and reviews is different as they are based on different research methodologies and data gathering processes. For instance, in a meta-analysis, the impact among the studies investigated is measured in a particular way, depending on policy or research targets (e.g., results from national examinations, pre-/post-tests). Meanwhile, in literature reviews, qualitative studies offer additional insights and detail based on self-reports and research opinions on several different aspects and stakeholders who could affect and be affected by ICT integration. As a result, it was challenging to draw causal relationships between so many interrelating variables.

Despite the challenges mentioned above, this study envisaged examining school units as ecosystems that consist of several actors by bringing together several variables from different research epistemologies to provide an understanding of the integration of ICTs. However, the use of other tools and methodologies and models for evaluation of the impact of digital technologies on education could give more detailed data and more accurate results. For instance, self-reflection tools, like SELFIE—developed on the DigCompOrg framework- (Kampylis et al., 2015 ; Bocconi & Lightfoot, 2021 ) can help capture a school’s digital capacity and better assess the impact of ICTs on education. Furthermore, the development of a theory of change could be a good approach for documenting the impact of digital technologies on education. Specifically, theories of change are models used for the evaluation of interventions and their impact; they are developed to describe how interventions will work and give the desired outcomes (Mayne, 2015 ). Theory of change as a methodological approach has also been used by researchers to develop models for evaluation in the field of education (e.g., Aromatario et al., 2019 ; Chapman & Sammons, 2013 ; De Silva et al., 2014 ).

We also propose that future studies aim at similar investigations by applying more holistic approaches for impact assessment that can provide in-depth data about the impact of digital technologies on education. For instance, future studies could focus on different research questions about the technologies that are used during the interventions or the way the implementation takes place (e.g., What methodologies are used for documenting impact? How are experimental studies implemented? How can teachers be taken into account and trained on the technology and its functions? What are the elements of an appropriate and successful implementation? How is the whole intervention designed? On which learning theories is the technology implementation based?).

Future research could also focus on assessing the impact of digital technologies on various other subjects since there is a scarcity of research related to particular subjects, such as geography, history, arts, music, and design and technology. More research should also be done about the impact of ICTs on skills, emotions, and attitudes, and on equality, inclusion, social interaction, and special needs education. There is also a need for more research about the impact of ICTs on administration, management, digitalization, and home-school relationships. Additionally, although new forms of teaching and learning with the use of ICTs (e.g., blended, hybrid, and online learning) have initiated several investigations in mainstream classrooms, only a few studies have measured their impact on students’ learning. Additionally, our review did not document any study about the impact of flipped classrooms on K-12 education. Regarding teaching and learning approaches, it is worth noting that studies referred to STEM or STEAM did not investigate the impact of STEM/STEAM as an interdisciplinary approach to learning but only investigated the impact of ICTs on learning in each domain as a separate subject (science, technology, engineering, arts, mathematics). Hence, we propose future research to also investigate the impact of the STEM/STEAM approach on education. The impact of emerging technologies on education, such as AR, VR, robotics, and AI has also been investigated recently, but more work needs to be done.

Finally, we propose that future studies could focus on the way in which specific factors, e.g., infrastructure and government support, school leadership and management, students’ and teachers’ digital competencies, approaches teachers utilize in the teaching and learning (e.g., blended, online and hybrid learning, flipped classrooms, STEM/STEAM approach, project-based learning, inquiry-based learning), affect the impact of digital technologies on education. We hope that future studies will give detailed insights into the concept of schools’ digital transformation through further investigation of impacts and factors which influence digital capacity and transformation based on the results and the recommendations of the present study.

Acknowledgements

This project has received funding under Grant Agreement No Ref Ares (2021) 339036 7483039 as well as funding from the European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement No 739578 and the Government of the Republic of Cyprus through the Deputy Ministry of Research, Innovation and Digital Policy. The UVa co-authors would like also to acknowledge funding from the European Regional Development Fund and the National Research Agency of the Spanish Ministry of Science and Innovation, under project grant PID2020-112584RB-C32.

Data availability statement

Declarations.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

  • Archer K, Savage R, Sanghera-Sidhu S, Wood E, Gottardo A, Chen V. Examining the effectiveness of technology use in classrooms: A tertiary meta-analysis. Computers & Education. 2014; 78 :140–149. doi: 10.1016/j.compedu.2014.06.001. [ CrossRef ] [ Google Scholar ]
  • Aromatario O, Van Hoye A, Vuillemin A, Foucaut AM, Pommier J, Cambon L. Using theory of change to develop an intervention theory for designing and evaluating behavior change SDApps for healthy eating and physical exercise: The OCAPREV theory. BMC Public Health. 2019; 19 (1):1–12. doi: 10.1186/s12889-019-7828-4. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Arztmann, M., Hornstra, L., Jeuring, J., & Kester, L. (2022). Effects of games in STEM education: A meta-analysis on the moderating role of student background characteristics. Studies in Science Education , 1-37. 10.1080/03057267.2022.2057732
  • Bado N. Game-based learning pedagogy: A review of the literature. Interactive Learning Environments. 2022; 30 (5):936–948. doi: 10.1080/10494820.2019.1683587. [ CrossRef ] [ Google Scholar ]
  • Balanskat, A. (2009). Study of the impact of technology in primary schools – Synthesis Report. Empirica and European Schoolnet. Retrieved 30 June 2022 from: https://erte.dge.mec.pt/sites/default/files/Recursos/Estudos/synthesis_report_steps_en.pdf
  • Balanskat, A. (2006). The ICT Impact Report: A review of studies of ICT impact on schools in Europe, European Schoolnet. Retrieved 30 June 2022 from:  https://en.unesco.org/icted/content/ict-impact-report-review-studies-ict-impact-schools-europe
  • Balanskat, A., Blamire, R., & Kefala, S. (2006). The ICT impact report.  European Schoolnet . Retrieved from: http://colccti.colfinder.org/sites/default/files/ict_impact_report_0.pdf
  • Balyer, A., & Öz, Ö. (2018). Academicians’ views on digital transformation in education. International Online Journal of Education and Teaching (IOJET), 5 (4), 809–830. Retrieved 30 June 2022 from  http://iojet.org/index.php/IOJET/article/view/441/295
  • Baragash RS, Al-Samarraie H, Moody L, Zaqout F. Augmented reality and functional skills acquisition among individuals with special needs: A meta-analysis of group design studies. Journal of Special Education Technology. 2022; 37 (1):74–81. doi: 10.1177/0162643420910413. [ CrossRef ] [ Google Scholar ]
  • Bates, A. W. (2015). Teaching in a digital age: Guidelines for designing teaching and learning . Open Educational Resources Collection . 6. Retrieved 30 June 2022 from: https://irl.umsl.edu/oer/6
  • Bingimlas KA. Barriers to the successful integration of ICT in teaching and learning environments: A review of the literature. Eurasia Journal of Mathematics, Science and Technology Education. 2009; 5 (3):235–245. doi: 10.12973/ejmste/75275. [ CrossRef ] [ Google Scholar ]
  • Blaskó Z, Costa PD, Schnepf SV. Learning losses and educational inequalities in Europe: Mapping the potential consequences of the COVID-19 crisis. Journal of European Social Policy. 2022; 32 (4):361–375. doi: 10.1177/09589287221091687. [ CrossRef ] [ Google Scholar ]
  • Bocconi S, Lightfoot M. Scaling up and integrating the selfie tool for schools' digital capacity in education and training systems: Methodology and lessons learnt. European Training Foundation. 2021 doi: 10.2816/907029,JRC123936. [ CrossRef ] [ Google Scholar ]
  • Brooks, D. C., & McCormack, M. (2020). Driving Digital Transformation in Higher Education . Retrieved 30 June 2022 from: https://library.educause.edu/-/media/files/library/2020/6/dx2020.pdf?la=en&hash=28FB8C377B59AFB1855C225BBA8E3CFBB0A271DA
  • Cachia, R., Chaudron, S., Di Gioia, R., Velicu, A., & Vuorikari, R. (2021). Emergency remote schooling during COVID-19, a closer look at European families. Retrieved 30 June 2022 from  https://publications.jrc.ec.europa.eu/repository/handle/JRC125787
  • Çelik B. The effects of computer simulations on students’ science process skills: Literature review. Canadian Journal of Educational and Social Studies. 2022; 2 (1):16–28. doi: 10.53103/cjess.v2i1.17. [ CrossRef ] [ Google Scholar ]
  • Chapman, C., & Sammons, P. (2013). School Self-Evaluation for School Improvement: What Works and Why? . CfBT Education Trust. 60 Queens Road, Reading, RG1 4BS, England.
  • Chauhan S. A meta-analysis of the impact of technology on learning effectiveness of elementary students. Computers & Education. 2017; 105 :14–30. doi: 10.1016/j.compedu.2016.11.005. [ CrossRef ] [ Google Scholar ]
  • Chen, Q., Chan, K. L., Guo, S., Chen, M., Lo, C. K. M., & Ip, P. (2022a). Effectiveness of digital health interventions in reducing bullying and cyberbullying: a meta-analysis. Trauma, Violence, & Abuse , 15248380221082090. 10.1177/15248380221082090 [ PubMed ]
  • Chen B, Wang Y, Wang L. The effects of virtual reality-assisted language learning: A meta-analysis. Sustainability. 2022; 14 (6):3147. doi: 10.3390/su14063147. [ CrossRef ] [ Google Scholar ]
  • Cheok ML, Wong SL. Predictors of e-learning satisfaction in teaching and learning for school teachers: A literature review. International Journal of Instruction. 2015; 8 (1):75–90. doi: 10.12973/iji.2015.816a. [ CrossRef ] [ Google Scholar ]
  • Cheung, A. C., & Slavin, R. E. (2011). The Effectiveness of Education Technology for Enhancing Reading Achievement: A Meta-Analysis. Center for Research and reform in Education .
  • Coban, M., Bolat, Y. I., & Goksu, I. (2022). The potential of immersive virtual reality to enhance learning: A meta-analysis. Educational Research Review , 100452. 10.1016/j.edurev.2022.100452
  • Condie, R., & Munro, R. K. (2007). The impact of ICT in schools-a landscape review. Retrieved 30 June 2022 from: https://oei.org.ar/ibertic/evaluacion/sites/default/files/biblioteca/33_impact_ict_in_schools.pdf
  • Conrads, J., Rasmussen, M., Winters, N., Geniet, A., Langer, L., (2017). Digital Education Policies in Europe and Beyond: Key Design Principles for More Effective Policies. Redecker, C., P. Kampylis, M. Bacigalupo, Y. Punie (ed.), EUR 29000 EN, Publications Office of the European Union, Luxembourg, 10.2760/462941
  • Costa P, Castaño-Muñoz J, Kampylis P. Capturing schools’ digital capacity: Psychometric analyses of the SELFIE self-reflection tool. Computers & Education. 2021; 162 :104080. doi: 10.1016/j.compedu.2020.104080. [ CrossRef ] [ Google Scholar ]
  • Cussó-Calabuig R, Farran XC, Bosch-Capblanch X. Effects of intensive use of computers in secondary school on gender differences in attitudes towards ICT: A systematic review. Education and Information Technologies. 2018; 23 (5):2111–2139. doi: 10.1007/s10639-018-9706-6. [ CrossRef ] [ Google Scholar ]
  • Daniel SJ. Education and the COVID-19 pandemic. Prospects. 2020; 49 (1):91–96. doi: 10.1007/s11125-020-09464-3. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Delcker J, Ifenthaler D. Teachers’ perspective on school development at German vocational schools during the Covid-19 pandemic. Technology, Pedagogy and Education. 2021; 30 (1):125–139. doi: 10.1080/1475939X.2020.1857826. [ CrossRef ] [ Google Scholar ]
  • Delgado, A., Wardlow, L., O’Malley, K., & McKnight, K. (2015). Educational technology: A review of the integration, resources, and effectiveness of technology in K-12 classrooms. Journal of Information Technology Education Research , 14, 397. Retrieved 30 June 2022 from  http://www.jite.org/documents/Vol14/JITEv14ResearchP397-416Delgado1829.pdf
  • De Silva MJ, Breuer E, Lee L, Asher L, Chowdhary N, Lund C, Patel V. Theory of change: A theory-driven approach to enhance the Medical Research Council's framework for complex interventions. Trials. 2014; 15 (1):1–13. doi: 10.1186/1745-6215-15-267. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Di Pietro G, Biagi F, Costa P, Karpiński Z, Mazza J. The likely impact of COVID-19 on education: Reflections based on the existing literature and recent international datasets. Publications Office of the European Union; 2020. [ Google Scholar ]
  • Elkordy A, Lovinelli J. Competencies, Culture, and Change: A Model for Digital Transformation in K12 Educational Contexts. In: Ifenthaler D, Hofhues S, Egloffstein M, Helbig C, editors. Digital Transformation of Learning Organizations. Springer; 2020. pp. 203–219. [ Google Scholar ]
  • Eng TS. The impact of ICT on learning: A review of research. International Education Journal. 2005; 6 (5):635–650. [ Google Scholar ]
  • European Commission. (2020). Digital Education Action Plan 2021 – 2027. Resetting education and training for the digital age. Retrieved 30 June 2022 from  https://ec.europa.eu/education/sites/default/files/document-library-docs/deap-communication-sept2020_en.pdf
  • European Commission. (2019). 2 nd survey of schools: ICT in education. Objective 1: Benchmark progress in ICT in schools . Retrieved 30 June 2022 from: https://data.europa.eu/euodp/data/storage/f/2019-03-19T084831/FinalreportObjective1-BenchmarkprogressinICTinschools.pdf
  • Eurydice. (2019). Digital Education at School in Europe , Luxembourg: Publications Office of the European Union. Retrieved 30 June 2022 from: https://eacea.ec.europa.eu/national-policies/eurydice/content/digital-education-school-europe_en
  • Escueta, M., Quan, V., Nickow, A. J., & Oreopoulos, P. (2017). Education technology: An evidence-based review. Retrieved 30 June 2022 from  https://ssrn.com/abstract=3031695
  • Fadda D, Pellegrini M, Vivanet G, Zandonella Callegher C. Effects of digital games on student motivation in mathematics: A meta-analysis in K-12. Journal of Computer Assisted Learning. 2022; 38 (1):304–325. doi: 10.1111/jcal.12618. [ CrossRef ] [ Google Scholar ]
  • Fernández-Gutiérrez M, Gimenez G, Calero J. Is the use of ICT in education leading to higher student outcomes? Analysis from the Spanish Autonomous Communities. Computers & Education. 2020; 157 :103969. doi: 10.1016/j.compedu.2020.103969. [ CrossRef ] [ Google Scholar ]
  • Ferrari, A., Cachia, R., & Punie, Y. (2011). Educational change through technology: A challenge for obligatory schooling in Europe. Lecture Notes in Computer Science , 6964 , 97–110. Retrieved 30 June 2022  https://link.springer.com/content/pdf/10.1007/978-3-642-23985-4.pdf
  • Fielding, K., & Murcia, K. (2022). Research linking digital technologies to young children’s creativity: An interpretive framework and systematic review. Issues in Educational Research , 32 (1), 105–125. Retrieved 30 June 2022 from  http://www.iier.org.au/iier32/fielding-abs.html
  • Friedel, H., Bos, B., Lee, K., & Smith, S. (2013). The impact of mobile handheld digital devices on student learning: A literature review with meta-analysis. In Society for Information Technology & Teacher Education International Conference (pp. 3708–3717). Association for the Advancement of Computing in Education (AACE).
  • Fu JS. ICT in education: A critical literature review and its implications. International Journal of Education and Development Using Information and Communication Technology (IJEDICT) 2013; 9 (1):112–125. [ Google Scholar ]
  • Gaol FL, Prasolova-Førland E. Special section editorial: The frontiers of augmented and mixed reality in all levels of education. Education and Information Technologies. 2022; 27 (1):611–623. doi: 10.1007/s10639-021-10746-2. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Garzón J, Acevedo J. Meta-analysis of the impact of Augmented Reality on students’ learning gains. Educational Research Review. 2019; 27 :244–260. doi: 10.1016/j.edurev.2019.04.001. [ CrossRef ] [ Google Scholar ]
  • Garzón, J., Baldiris, S., Gutiérrez, J., & Pavón, J. (2020). How do pedagogical approaches affect the impact of augmented reality on education? A meta-analysis and research synthesis. Educational Research Review , 100334. 10.1016/j.edurev.2020.100334
  • Grgurović M, Chapelle CA, Shelley MC. A meta-analysis of effectiveness studies on computer technology-supported language learning. ReCALL. 2013; 25 (2):165–198. doi: 10.1017/S0958344013000013. [ CrossRef ] [ Google Scholar ]
  • Haßler B, Major L, Hennessy S. Tablet use in schools: A critical review of the evidence for learning outcomes. Journal of Computer Assisted Learning. 2016; 32 (2):139–156. doi: 10.1111/jcal.12123. [ CrossRef ] [ Google Scholar ]
  • Haleem A, Javaid M, Qadri MA, Suman R. Understanding the role of digital technologies in education: A review. Sustainable Operations and Computers. 2022; 3 :275–285. doi: 10.1016/j.susoc.2022.05.004. [ CrossRef ] [ Google Scholar ]
  • Hardman J. Towards a pedagogical model of teaching with ICTs for mathematics attainment in primary school: A review of studies 2008–2018. Heliyon. 2019; 5 (5):e01726. doi: 10.1016/j.heliyon.2019.e01726. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hattie J, Rogers HJ, Swaminathan H. The role of meta-analysis in educational research. In: Reid AD, Hart P, Peters MA, editors. A companion to research in education. Springer; 2014. pp. 197–207. [ Google Scholar ]
  • Hattie J. Visible learning: A synthesis of over 800 meta-analyses relating to achievement. Routledge. 2008 doi: 10.4324/9780203887332. [ CrossRef ] [ Google Scholar ]
  • Higgins S, Xiao Z, Katsipataki M. The impact of digital technology on learning: A summary for the education endowment foundation. Education Endowment Foundation and Durham University; 2012. [ Google Scholar ]
  • Higgins, K., Huscroft-D’Angelo, J., & Crawford, L. (2019). Effects of technology in mathematics on achievement, motivation, and attitude: A meta-analysis. Journal of Educational Computing Research , 57(2), 283-319.
  • Hillmayr D, Ziernwald L, Reinhold F, Hofer SI, Reiss KM. The potential of digital tools to enhance mathematics and science learning in secondary schools: A context-specific meta-analysis. Computers & Education. 2020; 153 (1038):97. doi: 10.1016/j.compedu.2020.103897. [ CrossRef ] [ Google Scholar ]
  • Istenic Starcic A, Bagon S. ICT-supported learning for inclusion of people with special needs: Review of seven educational technology journals, 1970–2011. British Journal of Educational Technology. 2014; 45 (2):202–230. doi: 10.1111/bjet.12086. [ CrossRef ] [ Google Scholar ]
  • Jewitt C, Clark W, Hadjithoma-Garstka C. The use of learning platforms to organise learning in English primary and secondary schools. Learning, Media and Technology. 2011; 36 (4):335–348. doi: 10.1080/17439884.2011.621955. [ CrossRef ] [ Google Scholar ]
  • JISC. (2020). What is digital transformation?.  Retrieved 30 June 2022 from: https://www.jisc.ac.uk/guides/digital-strategy-framework-for-university-leaders/what-is-digital-transformation
  • Kalati, A. T., & Kim, M. S. (2022). What is the effect of touchscreen technology on young children’s learning?: A systematic review. Education and Information Technologies , 1-19. 10.1007/s10639-021-10816-5
  • Kalemkuş, J., & Kalemkuş, F. (2022). Effect of the use of augmented reality applications on academic achievement of student in science education: Meta-analysis review. Interactive Learning Environments , 1-18. 10.1080/10494820.2022.2027458
  • Kao C-W. The effects of digital game-based learning task in English as a foreign language contexts: A meta-analysis. Education Journal. 2014; 42 (2):113–141. [ Google Scholar ]
  • Kampylis P, Punie Y, Devine J. Promoting effective digital-age learning - a European framework for digitally competent educational organisations. JRC Technical Reports. 2015 doi: 10.2791/54070. [ CrossRef ] [ Google Scholar ]
  • Kazu IY, Yalçin CK. Investigation of the effectiveness of hybrid learning on academic achievement: A meta-analysis study. International Journal of Progressive Education. 2022; 18 (1):249–265. doi: 10.29329/ijpe.2022.426.14. [ CrossRef ] [ Google Scholar ]
  • Koh C. A qualitative meta-analysis on the use of serious games to support learners with intellectual and developmental disabilities: What we know, what we need to know and what we can do. International Journal of Disability, Development and Education. 2022; 69 (3):919–950. doi: 10.1080/1034912X.2020.1746245. [ CrossRef ] [ Google Scholar ]
  • König J, Jäger-Biela DJ, Glutsch N. Adapting to online teaching during COVID-19 school closure: Teacher education and teacher competence effects among early career teachers in Germany. European Journal of Teacher Education. 2020; 43 (4):608–622. doi: 10.1080/02619768.2020.1809650. [ CrossRef ] [ Google Scholar ]
  • Lawrence JE, Tar UA. Factors that influence teachers’ adoption and integration of ICT in teaching/learning process. Educational Media International. 2018; 55 (1):79–105. doi: 10.1080/09523987.2018.1439712. [ CrossRef ] [ Google Scholar ]
  • Lee, S., Kuo, L. J., Xu, Z., & Hu, X. (2020). The effects of technology-integrated classroom instruction on K-12 English language learners’ literacy development: A meta-analysis. Computer Assisted Language Learning , 1-32. 10.1080/09588221.2020.1774612
  • Lei, H., Chiu, M. M., Wang, D., Wang, C., & Xie, T. (2022a). Effects of game-based learning on students’ achievement in science: a meta-analysis. Journal of Educational Computing Research . 10.1177/07356331211064543
  • Lei H, Wang C, Chiu MM, Chen S. Do educational games affect students' achievement emotions? Evidence from a meta-analysis. Journal of Computer Assisted Learning. 2022; 38 (4):946–959. doi: 10.1111/jcal.12664. [ CrossRef ] [ Google Scholar ]
  • Liao YKC, Chang HW, Chen YW. Effects of computer application on elementary school student's achievement: A meta-analysis of students in Taiwan. Computers in the Schools. 2007; 24 (3–4):43–64. doi: 10.1300/J025v24n03_04. [ CrossRef ] [ Google Scholar ]
  • Li Q, Ma X. A meta-analysis of the effects of computer technology on school students’ mathematics learning. Educational Psychology Review. 2010; 22 (3):215–243. doi: 10.1007/s10648-010-9125-8. [ CrossRef ] [ Google Scholar ]
  • Liu, M., Pang, W., Guo, J., & Zhang, Y. (2022). A meta-analysis of the effect of multimedia technology on creative performance. Education and Information Technologies , 1-28. 10.1007/s10639-022-10981-1
  • Lu Z, Chiu MM, Cui Y, Mao W, Lei H. Effects of game-based learning on students’ computational thinking: A meta-analysis. Journal of Educational Computing Research. 2022 doi: 10.1177/07356331221100740. [ CrossRef ] [ Google Scholar ]
  • Martinez L, Gimenes M, Lambert E. Entertainment video games for academic learning: A systematic review. Journal of Educational Computing Research. 2022 doi: 10.1177/07356331211053848. [ CrossRef ] [ Google Scholar ]
  • Mayne J. Useful theory of change models. Canadian Journal of Program Evaluation. 2015; 30 (2):119–142. doi: 10.3138/cjpe.230. [ CrossRef ] [ Google Scholar ]
  • Moran J, Ferdig RE, Pearson PD, Wardrop J, Blomeyer RL., Jr Technology and reading performance in the middle-school grades: A meta-analysis with recommendations for policy and practice. Journal of Literacy Research. 2008; 40 (1):6–58. doi: 10.1080/10862960802070483. [ CrossRef ] [ Google Scholar ]
  • OECD. (2015). Students, Computers and Learning: Making the Connection . PISA, OECD Publishing, Paris. Retrieved from: 10.1787/9789264239555-en
  • OECD. (2021). OECD Digital Education Outlook 2021: Pushing the Frontiers with Artificial Intelligence, Blockchain and Robots. Retrieved from: https://www.oecd-ilibrary.org/education/oecd-digital-education-outlook-2021_589b283f-en
  • Pan Y, Ke F, Xu X. A systematic review of the role of learning games in fostering mathematics education in K-12 settings. Educational Research Review. 2022; 36 :100448. doi: 10.1016/j.edurev.2022.100448. [ CrossRef ] [ Google Scholar ]
  • Pettersson F. Understanding digitalization and educational change in school by means of activity theory and the levels of learning concept. Education and Information Technologies. 2021; 26 (1):187–204. doi: 10.1007/s10639-020-10239-8. [ CrossRef ] [ Google Scholar ]
  • Pihir, I., Tomičić-Pupek, K., & Furjan, M. T. (2018). Digital transformation insights and trends. In Central European Conference on Information and Intelligent Systems (pp. 141–149). Faculty of Organization and Informatics Varazdin. Retrieved 30 June 2022 from https://www.proquest.com/conference-papers-proceedings/digital-transformation-insights-trends/docview/2125639934/se-2
  • Punie, Y., Zinnbauer, D., & Cabrera, M. (2006). A review of the impact of ICT on learning. Working Paper prepared for DG EAC. Retrieved 30 June 2022 from: http://www.eurosfaire.prd.fr/7pc/doc/1224678677_jrc47246n.pdf
  • Quah CY, Ng KH. A systematic literature review on digital storytelling authoring tool in education: January 2010 to January 2020. International Journal of Human-Computer Interaction. 2022; 38 (9):851–867. doi: 10.1080/10447318.2021.1972608. [ CrossRef ] [ Google Scholar ]
  • Ran H, Kim NJ, Secada WG. A meta-analysis on the effects of technology's functions and roles on students' mathematics achievement in K-12 classrooms. Journal of computer assisted learning. 2022; 38 (1):258–284. doi: 10.1111/jcal.12611. [ CrossRef ] [ Google Scholar ]
  • Ređep, N. B. (2021). Comparative overview of the digital preparedness of education systems in selected CEE countries. Center for Policy Studies. CEU Democracy Institute .
  • Rott, B., & Marouane, C. (2018). Digitalization in schools–organization, collaboration and communication. In Digital Marketplaces Unleashed (pp. 113–124). Springer, Berlin, Heidelberg.
  • Savva M, Higgins S, Beckmann N. Meta-analysis examining the effects of electronic storybooks on language and literacy outcomes for children in grades Pre-K to grade 2. Journal of Computer Assisted Learning. 2022; 38 (2):526–564. doi: 10.1111/jcal.12623. [ CrossRef ] [ Google Scholar ]
  • Schmid RF, Bernard RM, Borokhovski E, Tamim RM, Abrami PC, Surkes MA, Wade CA, Woods J. The effects of technology use in postsecondary education: A meta-analysis of classroom applications. Computers & Education. 2014; 72 :271–291. doi: 10.1016/j.compedu.2013.11.002. [ CrossRef ] [ Google Scholar ]
  • Schuele CM, Justice LM. The importance of effect sizes in the interpretation of research: Primer on research: Part 3. The ASHA Leader. 2006; 11 (10):14–27. doi: 10.1044/leader.FTR4.11102006.14. [ CrossRef ] [ Google Scholar ]
  • Schwabe, A., Lind, F., Kosch, L., & Boomgaarden, H. G. (2022). No negative effects of reading on screen on comprehension of narrative texts compared to print: A meta-analysis. Media Psychology , 1-18. 10.1080/15213269.2022.2070216
  • Sellar S. Data infrastructure: a review of expanding accountability systems and large-scale assessments in education. Discourse: Studies in the Cultural Politics of Education. 2015; 36 (5):765–777. doi: 10.1080/01596306.2014.931117. [ CrossRef ] [ Google Scholar ]
  • Stock WA. Systematic coding for research synthesis. In: Cooper H, Hedges LV, editors. The handbook of research synthesis, 236. Russel Sage; 1994. pp. 125–138. [ Google Scholar ]
  • Su, J., Zhong, Y., & Ng, D. T. K. (2022). A meta-review of literature on educational approaches for teaching AI at the K-12 levels in the Asia-Pacific region. Computers and Education: Artificial Intelligence , 100065. 10.1016/j.caeai.2022.100065
  • Su J, Yang W. Artificial intelligence in early childhood education: A scoping review. Computers and Education: Artificial Intelligence. 2022; 3 :100049. doi: 10.1016/j.caeai.2022.100049. [ CrossRef ] [ Google Scholar ]
  • Sung YT, Chang KE, Liu TC. The effects of integrating mobile devices with teaching and learning on students' learning performance: A meta-analysis and research synthesis. Computers & Education. 2016; 94 :252–275. doi: 10.1016/j.compedu.2015.11.008. [ CrossRef ] [ Google Scholar ]
  • Talan T, Doğan Y, Batdı V. Efficiency of digital and non-digital educational games: A comparative meta-analysis and a meta-thematic analysis. Journal of Research on Technology in Education. 2020; 52 (4):474–514. doi: 10.1080/15391523.2020.1743798. [ CrossRef ] [ Google Scholar ]
  • Tamim, R. M., Bernard, R. M., Borokhovski, E., Abrami, P. C., & Schmid, R. F. (2011). What forty years of research says about the impact of technology on learning: A second-order meta-analysis and validation study. Review of Educational research, 81 (1), 4–28. Retrieved 30 June 2022 from 10.3102/0034654310393361
  • Tamim, R. M., Borokhovski, E., Pickup, D., Bernard, R. M., & El Saadi, L. (2015). Tablets for teaching and learning: A systematic review and meta-analysis. Commonwealth of Learning. Retrieved from: http://oasis.col.org/bitstream/handle/11599/1012/2015_Tamim-et-al_Tablets-for-Teaching-and-Learning.pdf
  • Tang C, Mao S, Xing Z, Naumann S. Improving student creativity through digital technology products: A literature review. Thinking Skills and Creativity. 2022; 44 :101032. doi: 10.1016/j.tsc.2022.101032. [ CrossRef ] [ Google Scholar ]
  • Tolani-Brown, N., McCormac, M., & Zimmermann, R. (2011). An analysis of the research and impact of ICT in education in developing country contexts. In ICTs and sustainable solutions for the digital divide: Theory and perspectives (pp. 218–242). IGI Global.
  • Trucano, M. (2005). Knowledge Maps: ICTs in Education. Washington, DC: info Dev / World Bank. Retrieved 30 June 2022 from  https://files.eric.ed.gov/fulltext/ED496513.pdf
  • Ulum H. The effects of online education on academic success: A meta-analysis study. Education and Information Technologies. 2022; 27 (1):429–450. doi: 10.1007/s10639-021-10740-8. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Underwood, J. D. (2009). The impact of digital technology: A review of the evidence of the impact of digital technologies on formal education. Retrieved 30 June 2022 from: http://dera.ioe.ac.uk/id/eprint/10491
  • Verschaffel, L., Depaepe, F., & Mevarech, Z. (2019). Learning Mathematics in metacognitively oriented ICT-Based learning environments: A systematic review of the literature. Education Research International , 2019 . 10.1155/2019/3402035
  • Villena-Taranilla R, Tirado-Olivares S, Cózar-Gutiérrez R, González-Calero JA. Effects of virtual reality on learning outcomes in K-6 education: A meta-analysis. Educational Research Review. 2022; 35 :100434. doi: 10.1016/j.edurev.2022.100434. [ CrossRef ] [ Google Scholar ]
  • Voogt J, Knezek G, Cox M, Knezek D, ten Brummelhuis A. Under which conditions does ICT have a positive effect on teaching and learning? A call to action. Journal of Computer Assisted Learning. 2013; 29 (1):4–14. doi: 10.1111/j.1365-2729.2011.00453.x. [ CrossRef ] [ Google Scholar ]
  • Vuorikari, R., Punie, Y., & Cabrera, M. (2020). Emerging technologies and the teaching profession: Ethical and pedagogical considerations based on near-future scenarios  (No. JRC120183). Joint Research Centre. Retrieved 30 June 2022 from: https://publications.jrc.ec.europa.eu/repository/handle/JRC120183
  • Wang LH, Chen B, Hwang GJ, Guan JQ, Wang YQ. Effects of digital game-based STEM education on students’ learning achievement: A meta-analysis. International Journal of STEM Education. 2022; 9 (1):1–13. doi: 10.1186/s40594-022-00344-0. [ CrossRef ] [ Google Scholar ]
  • Wen X, Walters SM. The impact of technology on students’ writing performances in elementary classrooms: A meta-analysis. Computers and Education Open. 2022; 3 :100082. doi: 10.1016/j.caeo.2022.100082. [ CrossRef ] [ Google Scholar ]
  • Zheng B, Warschauer M, Lin CH, Chang C. Learning in one-to-one laptop environments: A meta-analysis and research synthesis. Review of Educational Research. 2016; 86 (4):1052–1084. doi: 10.3102/0034654316628645. [ CrossRef ] [ Google Scholar ]
  • Write my thesis
  • Thesis writers
  • Buy thesis papers
  • Bachelor thesis
  • Master's thesis
  • Thesis editing services
  • Thesis proofreading services
  • Buy a thesis online
  • Write my dissertation
  • Dissertation proposal help
  • Pay for dissertation
  • Custom dissertation
  • Dissertation help online
  • Buy dissertation online
  • Cheap dissertation
  • Dissertation editing services
  • Write my research paper
  • Buy research paper online
  • Pay for research paper
  • Research paper help
  • Order research paper
  • Custom research paper
  • Cheap research paper
  • Research papers for sale
  • Thesis subjects
  • How It Works

100+ Top Technology Research Topics for Students

technology research topics

When pursuing their studies, learners are required to write papers and essays on technology research topics. This is a major academic task that influences the final grade that learners graduate with. But, the grades that students score are largely dependent on the technology topics that they opt to write about. Technology is generally a broad study field. As such, choosing research topics on technology is not always easy. If struggling to choose a good technology research topic for your academic paper or essay, here are some of the best ideas to consider.

Trendy Technology Research Topics

Perhaps, you need a prominent research topic about technology. In that case, you should consider prominent technology research paper topics. Here are some of the most trendy topics about technology to consider.

  • Technology use in education (here is our list of 110 topics in education research )
  • Space and technology studies (check out our top 30 space research topics )
  • Current and stunning developments in technology
  • Shocking inventions in modern technology that most people don’t know yet
  • What technologies can be considered harmful and destructive?
  • How does technology affect people’s values and health?
  • Can humans be replaced by robots completely in the workplace?
  • How have different countries contributed to modern technology developments
  • Transport safety and technology
  • Discuss the scope of the use of nanotechnologies
  • Discuss the use of technology in medicine
  • Which technologies can influence human mental health?
  • Discuss how technology is changing human life
  • What are the positive effects of technologies on personal safety?
  • How does technology affect personal safety negatively?
  • Discuss how modern technology facilitates the improvement of educational processes
  • How do modern technologies influence users’ mental health?
  • Why are robots likely to replace humans in the workplace?
  • How has technology influenced space travel?
  • Is food preservation technology safe?

This category also includes some of the most controversial technology topics. Nevertheless, each topic should be researched extensively before writing a paper or an essay.

Interesting Information Technology Topics

If pursuing a college or university program in information technology, this category has some of the best options for you. Here are some of the best information technology research topics to consider.

  • How useful is unlimited data storage?
  • How can humans manage large amounts of information?
  • How blurred is the line between the human brain and a computer?
  • Is entertainment technology something good or bad?
  • Discuss the differences between digital reading and print reading
  • How does Google impact the attention span of young people?
  • How important are traditional research skills in the current era of advanced information technologies?
  • How credible is the information provided by different platforms on the internet?
  • Do blogs and books compare?
  • Should schools and guardians encourage or discourage the use of media by children?
  • Does Google provide the best information when it prefers its specific brands?
  • Are humans losing the intelligence developed via conventional reading and research in the current digital age?
  • How important is learning to how use social media, iPads, and Smart Boards?
  • Should modern technologies be incorporated into teaching?
  • How has Google search changed humans?
  • How is intelligence gauged by humans?
  • Is online information format making the readers skim rather than digest information?
  • Is the ease of finding information on the internet something bad or good?
  • Is technology changing how people read?
  • Can using information technology make you smarter?

Students have many information technology research paper topics to choose from. However, select a topic that you find interesting to research and write about.

Interesting Science and Technology Topics

Are you looking for a science and technology-related topics? If yes, consider topics in this category. Here are some of the most interesting topic ideas in science and technology.

  • Discuss the greatest technological and scientific breakthroughs of the 21st century
  • How significant is number 0 in science and technology?
  • How important is the first black hole image?
  • Discuss the unlimited fractals’ perimeter despite their limited area
  • How can a person perform mental calculations rapidly?
  • Discuss the fourth dimension
  • Discuss the math behind the Draft lottery by the NBA
  • Differentiate non-parametric and parametric statistics
  • Discuss the concept of something being random or impossible to prove mathematically
  • Discuss some of the greatest modern age mathematicians
  • How are the latest automobile technology improvements protecting the environment?
  • Why are Smartphones resistant to viruses and bugs in comparison to computers?
  • Discuss the Internet of Things story
  • What made vector graphics mainstream and not pixels?
  • Discuss the latest technology advances that relate to medicine
  • Describe Molten Salt Nuclear Reactors
  • Is it possible to power everything with solar energy?
  • Explain why smart electronics get slower with time
  • Differentiate closed and open systems in technology
  • Discuss the process of converting old recordings into new formats

This category has amazing topics on technology and science. Select an idea that you find interesting to research and write a paper or essay about.

The Best Computer Technology Topics

If you’re pursuing a program on computer technologies, you will find educational technology topics in this category very interesting. Here are some of the best topics for technology and computers to consider.

  • How can you describe the Machine Learning future?
  • Discuss computer science that will be the most important in the future
  • Discuss how big data and bioinformatics change biology
  • What is the borderline for hardware and software in cloud computing?
  • How moving everything to the cloud affects human life?
  • Can robots become more intelligent and like people with reinforced learning?
  • How can computer programmers enhance device protection with open-source getting trendier?
  • Is Google becoming the first machine learning firm?
  • Explain machine learning in detail
  • Discuss the importance of machine learning
  • Which sectors does machine learning affect the most?
  • How will virtualization change the entertainment industry?
  • Describe virtualization
  • Can virtual reality be something bad or good?
  • How will virtual reality change education?
  • What can humans expect from the internet?
  • What improvements can be made on the internet?
  • How are robots changing the health sector?
  • Are humans yet to invent any computer language?
  • What will happen if most tasks that are currently done by humans are taken over by computers?

These are great technology essay topics to consider if pursuing a computer technology program in college or university. They can also be great technology debate topics. Nevertheless, extensive research is required when writing about any of these technology essay topics.

Controversial Topics in Technology for Research Papers and Essays

Are you looking for interesting technology topics that your audience will love to read about? If yes, consider one of these technology controversy topics to research and write about.

  • Do law enforcement cameras invade privacy?
  • Does the technology age turn humans into zombies?
  • Has technology advancement led to a throw-away society?
  • How has cloud technology changed data storage?
  • How have Smartphones reduced live communication?
  • Our modern technologies changing teaching?
  • How does the use of IT by construction companies lead to under-spending and recession?
  • Discuss the technologies used by NASA to explore Mars
  • How dangerous are cell phones?
  • How does media technology affect child development?
  • Is the use of technology in planning lessons good or bad?
  • How does technology influence the educational system?
  • Discuss the application of green technologies in engineering, architecture, and construction
  • Can modern technologies like cryptocurrencies help in identity theft prevention?
  • How can technology be used to enhance energy efficiency?
  • How are self-driving cars likely to change human life?
  • How did Steve Jobs and Bill Gates change the world with technology
  • What is the impact of drone warfare on humans?
  • Can the actual reality be substituted by virtual reality?
  • Discuss the use of technologies and smart materials in road building

If looking for hot topics in technology, consider some of the ideas in this category. Nevertheless, you can also find technology persuasive speech topics here. That’s because this category has some of the most debatable topics. If you still don’t find a great idea from this list, consider technology security topics or contact our thesis writers . Remember that extensive research is required to write a great paper or essay regardless of the topic that you opt to write about.

Leave a Reply Cancel reply

Suggestions or feedback?

MIT News | Massachusetts Institute of Technology

  • Machine learning
  • Social justice
  • Black holes
  • Classes and programs

Departments

  • Aeronautics and Astronautics
  • Brain and Cognitive Sciences
  • Architecture
  • Political Science
  • Mechanical Engineering

Centers, Labs, & Programs

  • Abdul Latif Jameel Poverty Action Lab (J-PAL)
  • Picower Institute for Learning and Memory
  • Lincoln Laboratory
  • School of Architecture + Planning
  • School of Engineering
  • School of Humanities, Arts, and Social Sciences
  • Sloan School of Management
  • School of Science
  • MIT Schwarzman College of Computing

MIT researchers introduce generative AI for databases

Press contact :, media download.

Stacked squares in techy space

*Terms of Use:

Images for download on the MIT News office website are made available to non-commercial entities, press and the general public under a Creative Commons Attribution Non-Commercial No Derivatives license . You may not alter the images provided, other than to crop them to size. A credit line must be used when reproducing images; if one is not provided below, credit the images to "MIT."

Stacked squares in techy space

Previous image Next image

A new tool makes it easier for database users to perform complicated statistical analyses of tabular data without the need to know what is going on behind the scenes.

GenSQL, a generative AI system for databases, could help users make predictions, detect anomalies, guess missing values, fix errors, or generate synthetic data with just a few keystrokes.

For instance, if the system were used to analyze medical data from a patient who has always had high blood pressure, it could catch a blood pressure reading that is low for that particular patient but would otherwise be in the normal range.

GenSQL automatically integrates a tabular dataset and a generative probabilistic AI model, which can account for uncertainty and adjust their decision-making based on new data.

Moreover, GenSQL can be used to produce and analyze synthetic data that mimic the real data in a database. This could be especially useful in situations where sensitive data cannot be shared, such as patient health records, or when real data are sparse.

This new tool is built on top of SQL, a programming language for database creation and manipulation that was introduced in the late 1970s and is used by millions of developers worldwide.

“Historically, SQL taught the business world what a computer could do. They didn’t have to write custom programs, they just had to ask questions of a database in high-level language. We think that, when we move from just querying data to asking questions of models and data, we are going to need an analogous language that teaches people the coherent questions you can ask a computer that has a probabilistic model of the data,” says Vikash Mansinghka ’05, MEng ’09, PhD ’09, senior author of a paper introducing GenSQL and a principal research scientist and leader of the Probabilistic Computing Project in the MIT Department of Brain and Cognitive Sciences.

When the researchers compared GenSQL to popular, AI-based approaches for data analysis, they found that it was not only faster but also produced more accurate results. Importantly, the probabilistic models used by GenSQL are explainable, so users can read and edit them.

“Looking at the data and trying to find some meaningful patterns by just using some simple statistical rules might miss important interactions. You really want to capture the correlations and the dependencies of the variables, which can be quite complicated, in a model. With GenSQL, we want to enable a large set of users to query their data and their model without having to know all the details,” adds lead author Mathieu Huot, a research scientist in the Department of Brain and Cognitive Sciences and member of the Probabilistic Computing Project.

They are joined on the paper by Matin Ghavami and Alexander Lew, MIT graduate students; Cameron Freer, a research scientist; Ulrich Schaechtle and Zane Shelby of Digital Garage; Martin Rinard, an MIT professor in the Department of Electrical Engineering and Computer Science and member of the Computer Science and Artificial Intelligence Laboratory (CSAIL); and Feras Saad ’15, MEng ’16, PhD ’22, an assistant professor at Carnegie Mellon University. The research was recently presented at the ACM Conference on Programming Language Design and Implementation.

Combining models and databases

SQL, which stands for structured query language, is a programming language for storing and manipulating information in a database. In SQL, people can ask questions about data using keywords, such as by summing, filtering, or grouping database records.

However, querying a model can provide deeper insights, since models can capture what data imply for an individual. For instance, a female developer who wonders if she is underpaid is likely more interested in what salary data mean for her individually than in trends from database records.

The researchers noticed that SQL didn’t provide an effective way to incorporate probabilistic AI models, but at the same time, approaches that use probabilistic models to make inferences didn’t support complex database queries.

They built GenSQL to fill this gap, enabling someone to query both a dataset and a probabilistic model using a straightforward yet powerful formal programming language.

A GenSQL user uploads their data and probabilistic model, which the system automatically integrates. Then, she can run queries on data that also get input from the probabilistic model running behind the scenes. This not only enables more complex queries but can also provide more accurate answers.

For instance, a query in GenSQL might be something like, “How likely is it that a developer from Seattle knows the programming language Rust?” Just looking at a correlation between columns in a database might miss subtle dependencies. Incorporating a probabilistic model can capture more complex interactions.   

Plus, the probabilistic models GenSQL utilizes are auditable, so people can see which data the model uses for decision-making. In addition, these models provide measures of calibrated uncertainty along with each answer.

For instance, with this calibrated uncertainty, if one queries the model for predicted outcomes of different cancer treatments for a patient from a minority group that is underrepresented in the dataset, GenSQL would tell the user that it is uncertain, and how uncertain it is, rather than overconfidently advocating for the wrong treatment.

Faster and more accurate results

To evaluate GenSQL, the researchers compared their system to popular baseline methods that use neural networks. GenSQL was between 1.7 and 6.8 times faster than these approaches, executing most queries in a few milliseconds while providing more accurate results.

They also applied GenSQL in two case studies: one in which the system identified mislabeled clinical trial data and the other in which it generated accurate synthetic data that captured complex relationships in genomics.

Next, the researchers want to apply GenSQL more broadly to conduct largescale modeling of human populations. With GenSQL, they can generate synthetic data to draw inferences about things like health and salary while controlling what information is used in the analysis.

They also want to make GenSQL easier to use and more powerful by adding new optimizations and automation to the system. In the long run, the researchers want to enable users to make natural language queries in GenSQL. Their goal is to eventually develop a ChatGPT-like AI expert one could talk to about any database, which grounds its answers using GenSQL queries.   

This research is funded, in part, by the Defense Advanced Research Projects Agency (DARPA), Google, and the Siegel Family Foundation.

Share this news article on:

Related links.

  • Vikash Mansinghka
  • Martin Rinard
  • Probabilistic Computing Project
  • Computer Science and Artificial Intelligence Laboratory
  • Department of Brain and Cognitive Sciences
  • Department of Electrical Engineering and Computer Science

Related Topics

  • Computer science and technology
  • Programming
  • Artificial intelligence
  • Programming languages
  • Brain and cognitive sciences
  • Computer Science and Artificial Intelligence Laboratory (CSAIL)
  • Electrical Engineering & Computer Science (eecs)
  • Defense Advanced Research Projects Agency (DARPA)

Related Articles

Closeup image of a gauge with the word "SCORE" in bold. Levels are seen in rainbow colors with the options very bad, poor, fair, good, very good, and excellent. The needle is pointing to excellent.

Probabilistic AI that knows how well it’s working

Two red lines, one above the other, against a black background. The lines have many peaks and valleys, representing a probability graph.

Automating the math for decision-making under uncertainty

Graphic of rows and columns of the numeral 1 over a varicolored background, abstractly representing information in entropy

Estimating the informativeness of data

3D illustration of a balance scale with question marks in each pan

Exact symbolic artificial intelligence for faster, better assessment of AI fairness

Previous item Next item

More MIT News

A woman and three men flank the microbioreactor system, which is about the size of a small printer

A new way to miniaturize cell production for cancer treatment

Read full story →

Deborah Fitzgerald stands at a lectern with an open laptop and some papers in front of her

Investigating the past to see technology’s future

A woman in uniform sitting in a locker room with helmet in lap, head down, and eyes closed, being consoled by a colleague.

A new strategy to cope with emotional stress

Three students stand on a stage with a large monitor behind them displaying a group of people and the words "Thank you."

“They can see themselves shaping the world they live in”

Black spheres with the letter “C” on them float out of the water.

Study: Weaker ocean circulation could enhance CO2 buildup in the atmosphere

A small plastic pack labeled “Stable #1 inside” with capsules inside floats on the ISS.

MIT engineers find a way to protect microbes from extreme conditions

  • More news on MIT News homepage →

Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA, USA

  • Map (opens in new window)
  • Events (opens in new window)
  • People (opens in new window)
  • Careers (opens in new window)
  • Accessibility
  • Social Media Hub
  • MIT on Facebook
  • MIT on YouTube
  • MIT on Instagram

China leading generative AI patents race, UN report says

  • Medium Text

Illustration shows AI (Artificial Intelligence) letters and computer motherboard

Sign up here.

Reporting by Emma Farge; Editing by Aurora Ellis

Our Standards: The Thomson Reuters Trust Principles. New Tab , opens new tab

An AI (Artificial Intelligence) sign is seen at the World Artificial Intelligence Conference (WAIC) in Shanghai

Technology Chevron

China leads the world in adoption of generative ai, survey shows.

China is leading the world in adopting generative AI, a new survey shows, the latest sign the country is making strides in the technology that gained global attention after U.S.-based OpenAI's ChatGPT launched in late 2022.

Europe's Ariane 6 rocket takes off, in Kourou

COMMENTS

  1. Digital Transformation: An Overview of the Current State of the Art of

    Approached this way, the systematic literature review displays major research avenues of digital transformation that consider technology as the main driver of these changes. This paper qualitatively classifies the literature on digital business transformation into three different clusters based on technological, business, and societal impacts.

  2. Technology

    Through a matched case-control analysis this study reveals accident risk disparities between autonomous and human-driven vehicles. It suggests that accidents of vehicles equipped with Advanced ...

  3. 100 Technology Topics for Research Papers

    Relationships and Media. 7. War. 8. Information and Communication Tech. 9. Computer Science and Robotics. Researching technology can involve looking at how it solves problems, creates new problems, and how interaction with technology has changed humankind.

  4. Digital transformation: a review, synthesis and opportunities for

    In the last years, scholarly attention was on a steady rise leading to a significant increase in the number of papers addressing different technological and organizational aspects of digital transformation. In this paper, we consolidate existing findings which mainly stem from the literature of information systems, map the territory by sharing important macro- and micro-level observations, and ...

  5. Education Technology: An Evidence-Based Review

    This review paper synthesizes and discusses experimental evidence on the effectiveness of technology-based approaches in education and outlines areas for future inquiry. In particular, we examine RCTs across the following categories of education technology: (1) access to technology, (2) computer-assisted learning, (3) technology-enabled ...

  6. Full article: The rise of technology and impact on skills

    The paper draws mainly from the economics and human resources literature to describe trends in impact on jobs and skills development. It uses secondary sources and examples to explore policy options. This paper is structured as follows. The first section begins with a literature review of how technology impacts jobs and skills.

  7. Education reform and change driven by digital technology: a

    Within the field of digital technology education application research over the past two decades, Neil Selwyn stands as the most productive author, having published 15 papers garnering a total of ...

  8. PDF Technology and Education: Computers, Software, and the Internet

    Although technology is a broad term, the paper focuses on the effects of computers, the Internet, and software such as computer assisted instruction, which are currently the most. relevant forms of new technology in education.3 The discussion focuses primarily on the impacts. of computers, the Internet and software on educational outcomes ...

  9. The rise of 5G technologies and systems: A quantitative analysis of

    This paper presents a systematic outline of the development of 5G-related research until 2020 as revealed by over 10,000 science and technology publications. The exercise addresses the emergence, growth, and impact of this body of work and offers insights regarding disciplinary distribution, international performance, and historical dynamics.

  10. Information technology

    Information technology articles from across Nature Portfolio. Information technology is the design and implementation of computer networks for data processing and communication. This includes ...

  11. (PDF) Impact of modern technology in education

    Technology has revolutionized the field of education. ... This research paper is a study of the efficacy of the flipped learning approach in teaching 'Wh' questions to first-year undergraduate ...

  12. Google Research

    Our research teams impact technology used by people all over the world. Explore research areas. play silent looping video pause silent looping video. One research paper started it all. The research we do today becomes the Google of the future. Google itself began with a research paper, published in 1998, and was the foundation of Google Search ...

  13. 130+ Best Technology Research Topics

    The best research paper topics technology are those the writers fully understood and created. Get the Topic Idea You can only carve out a topic for an assignment that you understand. This is why the first step is imperative and why this one must follow. Understanding the topic that currently and comprehensively covers the assignment and its ...

  14. Internet of Things (IoT) for Next-Generation Smart Systems: A Review of

    The Internet of Things (IoT)-centric concepts like augmented reality, high-resolution video streaming, self-driven cars, smart environment, e-health care, etc. have a ubiquitous presence now. These applications require higher data-rates, large bandwidth, increased capacity, low latency and high throughput. In light of these emerging concepts, IoT has revolutionized the world by providing ...

  15. Technological Innovation: Articles, Research, & Case Studies on

    New research on technological innovation from Harvard Business School faculty on issues including using data mining to improve productivity, why business IT innovation is so difficult, and the business implications of the technology revolution.

  16. The Effect and Importance of Technology in the Research Process

    Abstract. From elementary schooling to doctoral-level education, technology has become an integral part of the learning process in and out of the classroom. With the implementation of the Common Core Learning Standards, the skills required for research are more valuable than ever, for they are required to succeed in a college setting, as well ...

  17. Full article: What is technology?

    I. Eric Schatzberg's publications have long been invaluable to those who teach the history of technology. His article 'Technik comes to America: changing meanings of technology before 1930', which appeared in Technology and Culture in 2006, was essential reading for students and was the best guide to its subject. Footnote 1 In Technology: Critical History of a Concept, Schatzberg expands ...

  18. PDF 1:1 Technology and its Effect on Student Academic Achievement and ...

    This study set out to determine whether one to one technology (1:1 will be used hereafter) truly impacts and effects the academic achievement of students. This study's second goal was to determine whether 1:1 Technology also effects student motivation to learn. Data was gathered from students participating in this study through the Pearson ...

  19. 450+ Technology Research Topics: Best Ideas for Students

    Technology Research Paper Topics on Genetic Engineering. Genetic engineering is an area of science that involves the manipulation of genes to change or enhance biological characteristics. This field has raised tremendous ethical debates while offering promising solutions in medicine and agriculture. Here are some captivating topics for a ...

  20. Impacts of digital technologies on education and factors influencing

    It is based on meta-analyses and review papers found in scholarly, peer-reviewed content databases and other key studies and reports related to the concepts studied (e.g., digitalization, digital capacity) from professional and international bodies (e.g., the OECD). ... Journal of Information Technology Education Research, 14, 397.

  21. Journal of Research on Technology in Education

    Journal overview. The Journal of Research on Technology in Education (JRTE) is a premier source for high-quality, peer-reviewed research that defines the state of the art, and future horizons, of teaching and learning with technology. The terms "education" and "technology" are broadly defined. Education is inclusive of formal educational ...

  22. 100+ Greatest Technology Research Topics for Students

    Technology is generally a broad study field. As such, choosing research topics on technology is not always easy. If struggling to choose a good technology research topic for your academic paper or essay, here are some of the best ideas to consider. Trendy Technology Research Topics. Perhaps, you need a prominent research topic about technology.

  23. Emerging Health Technologies and How They Can Transform Healthcare

    Artificial intelligence (AI) and machine learning (ML) have become important parts of digital technologies. The Internet is a 'general-purpose' digital technology with a phenomenal impact on the way humanity works and delivers efficient healthcare services. Health systems generate voluminous data on a continuous basis.

  24. MIT researchers introduce generative AI for databases

    They are joined on the paper by Matin Ghavami and Alexander Lew, MIT graduate students; Cameron Freer, a research scientist; Ulrich Schaechtle and Zane Shelby of Digital Garage; Martin Rinard, an MIT professor in the Department of Electrical Engineering and Computer Science and member of the Computer Science and Artificial Intelligence ...

  25. China leading generative AI patents race, UN report says

    China is far ahead of other countries in generative AI inventions like chatbots, filing six times more patents than its closest rival the United States, U.N. data showed on Wednesday.